A classic geometry view of Teichmüller theory and variations on the Gromov-Lawson...
Probabilistic and algebraic aspects of smooth dynamical systems
![]() | |
Author(s): |
Eduardo Carvalho Bento Gonçalves
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica |
Defense date: | 2010-01-07 |
Examining board members: |
Alexandre Ananin;
Alcibiades Rigas;
Misha Verbitsky
|
Advisor: | Alexandre Ananin |
Abstract | |
First, we present an introduction to plane hyperbolic geometry, which may be useful even for a beginner. Next, using the concept of "simple earthquake", we explicitly describe, in terms of some natural coordinates, the Teichmüller space T Hn of hyperelliptic surfaces. This description turns out to be simple: T Hn is the space of certain (2n ? 6)-tuples of points in the ideal boundary of the hyperbolic plane. Based on the description in question, many results are presented, including: a simple and effective criterion which allows one to verify if a given representation of a surface group in the group of isometries of the hyperbolic plane is faithful and discrete; a new and elementary proof for a result of W. Goldman, which characterizes the faithful and discrete representations as being those which have maximal Toledo invariant; a new and elementary proof for a theorem of D. Toledo, relative to the rigidity of representations of surface groups in the group of holomorphic isometries of the complex hyperbolic space. key-words: Area, discreteness, representations, plane hyperbolic geometry, Teichmüller space, complex hyperbolic geometry (AU) |