Advanced search
Start date
Betweenand


Stability analysis of inverter-based distributed generators with antiislanding protection

Full text
Author(s):
Tiago Rodarte Ricciardi
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Defense date:
Examining board members:
Walmir de Freitas Filho; Ernane Antônio Alves Coelho; Madson Cortes de Almeida
Advisor: Walmir de Freitas Filho
Abstract

The usage of inverter-based generators connected directly to electric Power distribution systems has considerably increased in recent years due to the technological advances of fuel and photovoltaic cells as well as microturbines and wind turbines. In this context, the usage of anti-islanding protection devices at the interconnection point is required by the main technical guides utilized by the utilities. Islanding occurs when a portion of the distribution system becomes electrically isolated from the remainder of the power system, yet continues to be energized by distributed generators. In the case of inverter-based generators, the main devices commercially employed to supply anti-islanding protection are based on the positive feedback concept. These methods use the deviations of voltage frequency and/or magnitude from normal values as positive feedback signals into the control system to influence the operation of inverterbased distributed generators. If the generator is connected to a strong utility system, in priori, the destabilizing force of the positive feedback has a negligible impact and the generator can operate without difficulties. On the other hand, when the generator is islanded, the positive feedback can destabilize the generator easily. Such distinctively different generator behaviors facilitate the detection of islanding conditions by using under/over voltage and frequency relays. Since the positive feedback scheme is a destabilizing force, the impact of this scheme on the stability of system with multiples inverter-based generators is of concern. If the positive feedback gain is too high, the generator may become unstable even if it is connected to the main supply system. Thus, the objective of this master thesis is to develop several small-signal models to investigate the stability of distribution network with multiple inverter-based generators with positive feedback anti-islanding protection by using modal analysis (AU)

FAPESP's process: 09/01736-5 - Development of Methodologies for Analysis of Positive Feedback Anti-Islanding Protection of Inverter-Based Generators
Grantee:Tiago Rodarte Ricciardi
Support Opportunities: Scholarships in Brazil - Master