Advanced search
Start date
Betweenand


Synthesis and degradation of lysine in higher organisms: a possible bacterial origin

Full text
Author(s):
Guilherme Coutinho de Melo Serrano
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Paulo Arruda; Ricardo Azevedo; Gonçalo Amarante Guimarães Pereira
Advisor: Paulo Arruda
Abstract

Lysine is an amino acid that is not synthesized by animals and therefore need to be ingested in its final form. Lysine concentration is low in cereals and the lack of this amino acid in diet can cause severe damage to the organism specially associated to the nervous system. On the other hand its excess, caused by the deficiency in the degradation of lysine, can also lead to organism disorder as mental development retardation. Lysine is mainly synthesized trough the aspartate pathway in plant and bacteria and the same pathway can also lead to synthesis of threonine, methionine and isoleucine. Lysine degradation occours trough the saccharopine pathway in animal and plant, but other pathways are known for bacteria and fungi. Until now there was not an evidence of the existence of any of the pathways. Here we present new data of the existence of the aspartate pathway in animals and the saccharopine pathway bacteria respectively. We were able to demonstrate the existence of most of the genes that compose the aspartate pathway in Anopheles gambie e Aedes aegypti and sequence clustering suggest a possible origin of these genes from endosymbiontic bacteria. Concerning the lysine degradation, we have gathered data that indicates the existence of genes responsible for producing the proteins for two first enzymatic steps, lysine ketoglutarate redutase (LKR) and saccharopine dehidrogenase (SDH), in bacteria. Exclusively in Proteobacteria we found these genes in the exact same structure of animals and plants and we were able to detected enzymatic activity for LKR and SDH. Curiously these genes are inside a single operon that also has glutatione s transferase and phosphoglyceraldehide mutase, both genes previously associated with defense against oxidative stress. This may suggest a possible new role for LKR/SDH in preventing oxidative stress. The analysis of amino acid sequence and domains of LKR/SDH in plant, animals and fungus, shows that there is a region of approximately 110 aa between LKR and SDH domains that is exclusive to plants, we called this region the inter domain (ID). Interestedly we found only in Cyanobacterial this typical plant domain, the ID. After these novel results we attempted to reconstruct the evolutionary history of pathway, suggesting an explanation for the origin of plants and animals LKR and SDH (AU)

FAPESP's process: 06/04992-4 - Synthesis and degradation of lysine in various biological systems
Grantee:Guilherme Coutinho de Melo Serrano
Support Opportunities: Scholarships in Brazil - Master