Advanced search
Start date
Betweenand


Dynamic effects in electronic transport in molecular systems based on DNA

Full text
Author(s):
Carlos José Páez
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Peter Alexander Bleinroth Schulz; Andrea Brito Latge; Caio Henrique Lewenkopf; Eduardo Miranda; Maurice de Koning
Advisor: Peter Alexander Bleinroth Schulz
Abstract

This work is concerned with the electronic and transport properties of finite structures of DNA investigated by means of heuristic methods. We initially examined the localization length and participation number as a function of system size, energy dependence, concentration of nucleotides and the contact coupling between the leads and the DNA molecule. For such purpose we use an effective tight-binding approach including the molecular backbone. We also numerically calculated the electric current through three kinds of DNA sequences (telomeric, ? -DNA, and p53-DNA), as well as through two dimensional square lattice patterns (self-assembly) build from different DNA sequences. The calculation of current is performed by integrating the transmission function over the range of energies allowed by the chemical potentials. The electron transport through short double-stranded DNA wires, in which the electrons are strongly coupled to the specific vibrational modes of the DNA was also investigated. Within the main findings, we show that a telomeric DNA structure, when treated in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric structures and are present independent of sizes and sequence initialization at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The set of results enable a benchmarking for experimental investigations towards possible nanoelectronic applications, as well as scrutiny of the large diversity in previous experimental findings concerning transport properties of DNA strands (AU)