The inclusion of f-type function in the Schwinger Multichannel Method for electron...
![]() | |
Author(s): |
Felipe Arretche
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin |
Defense date: | 2006-09-22 |
Examining board members: |
Marco Aurélio Pinheiro Lima;
Eduardo Chaves Montenegro;
Ione Iga;
José Antonio Roversi;
Luiz Marco Brescansin
|
Advisor: | Marco Aurélio Pinheiro Lima |
Abstract | |
In this thesis we investigate the theoretical modelling of positron-molecule collisions in low energy regime using the Schwinger multichannel method. Our initial objective was to sophisticate the procedure of calculation of the annihilation parameter Zeff. This quantity is directly proportional to the annihilation rate of positrons with molecular cloud electrons. Unhapilly the method underestimates Zeff compared to the experimental data. A more detailed investigation suggests that this deficiency is connected with a poor description of the electronpositron cusp of the scattering wave function. To this end, we inserted a complex potential of Dirac delta type in the scattering Hamiltonian with the major objective of improving the direct annihilation calculation and possibly to adaptate it to describe the real positronium formation channel. Aplication to model systems like He atom and H2 molecule showed that this alternative technique produce similar results compared to the usual perturbative calculation. In this sense, the discrepancy between the theoretical annihilation parameter generated by Schwinger multichannel method and the experimental data remains as an open problem. Recently the research group of San Diego University, in California, developed an experimental apparatus to measure electronic excitation cross sections for atoms and molecules by positron impact. The Schwinger multichannel method is the only that has sistematicaly attacked the problem for molecules in the literature. In this work, we continue this research program calculating electronic excitation cross sections for H2 and CO molecules with varied degrees of approximation. Our results indicate that integral cross sections are insensible to the level of multichannel coupling used in the collision model and that polarization effects can be particularly relevant for energies immediately above electronic excitation thresholds. Finally, and this doubtless is the greater result of this thesis, we learnt to treat the variational basis used in the scattering calculation. The evidence that such level of maturity was reached is the convergence of the cross sections by the methods of computation of the Green¿s function matrix elements, obtained before only by "guessing" of the set of primitive Gaussians employed in the scattering calculation (AU) |