O/A emulsions stabilized with amphiphilic complexes of whey proteins and gellan
Development of mixed protein gels incorporating vitamins D3 and B12 using in vitro...
In vitro digestibility of gellan gels: static and dynamic systems.
![]() | |
Author(s): |
Carolina Siqueira Franco Picone
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Campinas, SP. |
Institution: | Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia de Alimentos |
Defense date: | 2008-03-19 |
Examining board members: |
Rosiane Lopes da Cunha;
Luiz Antonio Viotto;
Divair Christ;
Alessandra Rafia Baroni
|
Advisor: | Rosiane Lopes da Cunha |
Abstract | |
As the ingredient interactions are important for the development of new milk products and for the control and management of its stability and texture properties, the aim of this work was to elucidate the milk proteins and gellan gum interactions. The effect of different concentrations of gellan gum, sodium caseinate and whey protein concentrate, as well as the polysaccharide conformational transition on the systems texture properties, microstructure and water release were studied. The gellan gum conformational transition was studied in different pH values by oscillatory shear measurements at low frequencies. It was observed that the conformational polysaccharide transition (coil-helix) was thermoirreversible at pH 3.5 while at higher pH values the gels were temperature reversible. Moreover, systems at pH 3.5 showed higher viscosity and storage modulus, but at 5.3 ¿ 7.0 pH range it was not observed significant differences on the material rheological properties. Protein-polysaccharide systems showed different structures according to the polymers concentration and polysaccharide conformation, resulting on variations of its mechanical properties, water binding and solubility. Bi-polymeric systems composed of caseinate and gellan formed coacervates at high protein concentration leading to a compact structure which reflected in higher rupture stress, elasticity and water holding capacity. Nevertheless, on multipolymeric samples it was not observed coacervates probably due the enhance of protein-protein interactions that lead to increase on water holding capacity values. Gellan gum and whey proteins showed thermodynamic incompatibility at high polymer concentrations, confirmed by the solubility measurements, and induced the formation of weaker and less deformable gels, which had a porous structure with more ability to hold water. The use of coil gellan on the preparation of the samples with high protein concentration resulted on electrostatic complexes formation between the proteins and the individual gellan molecules, reducing the gels hardness (AU) |