Advanced search
Start date
Betweenand


Styrene polimerization via free radical mediated by nitroxides using trifunctional initiator

Full text
Author(s):
Eduardo Galhardo
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Liliane Maria Ferrareso Lona; Leila Peres; Paulo de Tarso Vieira e Rosa
Advisor: Liliane Maria Ferrareso Lona
Abstract

Controlled free radical polymerization, also known as "pseudo-living radical polymerization" or "Living Free Radical Polymerization" (LFRP) has received increasing attention as a technique for the production of polymers with micro structure highly controlled. In particular, narrow molecular weight distributions, are obtained with polidispersidade very close to one. Conventional routes to produce polymers like this have been ions polymerizations, however, they are extremely sensitive to impurities and type of solvent. This radical polymerization, which are more versatile and robust to impurities, for the production of polymers with structures controlled, has become an important alternative. One of the challenges to be faced in the controlled polymerization is the increased speed of reaction, since the controlled polymerization is much slower that the standart free radical polymerization, due to the balance that occurs in controlled polymerization, in wich chain growing stay for long period of time as dormant polymer. In this research Nitroxide Mediate Radical Polymerization, using a trifunctional peroxide cyclic, will be done a studied in experimental level (ampoules polymerization). Literature reports NMRP process using monofunctional initiator (in most cases, the initiator BPO is used with the controller TEMPO) and bifunctional initiators (research developed by the LASSPQ Laboratory). It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated initialy, if compared with monofunctionais initiators. Furthermore, cyclic initiator might not form branches in chains, which prevents an increase in the polymer polidispersity. The effect of the dissociation constant for the trifunctional initiator in the reaction speed was analyzed, as well as the effect of the recombination of the peroxides groups, most common in cyclic compounds. (AU)