Advanced search
Start date
Betweenand


Value functions and Dubrovin valuation rings on simple algebras

Full text
Author(s):
Mauricio de Araujo Ferreira
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Defense date:
Examining board members:
Antonio José Engler; Eduardo do Nascimento Marcos; Miguel Angel Alberto Ferrero; Adriano Adrega de Moura; Paulo Roberto Brumatti
Advisor: Adrian Roscoe Wadsworth; Antonio José Engler
Abstract

In this thesis work we study the connection between two theories of noncommutative valuation: Dubrovin valuation rings and gauges. Dubrovin valuation rings were introduced in 1982 as a generalization of invariant valuation rings to Artinian simple rings. Gauges are valuation-like maps that can be defined not only on division algebras, but more generally, on finite-dimensional semisimple algebras over valued fields. Gauges were introduced much more recently in 2010 by Tignol and Wadsworth. Just as for valuations on fields, we can define a ring associated to a gauge, which we call gauge ring. Arithmetic properties of the gauge ring are studied. We show that the gauge ring is always a semi-local order integral over its center. We also describe the gauge ring with respect to composition of gauges and scalar extension. We introduce the concept of minimal gauge on central simple algebras, which are gauges that the degree zero part of the associated graded ring has the least number of simple components. We show that the ring of a minimal gauge is an intersection of a family of Dubrovin valuation rings having the intersection property. The intersection property was introduced by Gräter in 1992. We also proved that if we start with a family of Dubrovin valuation rings having the intersection property, then there exist a minimal gauge associated, assuming that the valuation of the center has finite rank. In this direction, our main result is an existence theorem of minimal gauges on central simple algebra over a field with a finite rank valuation. We also generalize for simple algebras, non-necessarily central, a result of Tignol and Wadsworth which relate gauges with certain value functions introduced by Morandi in 1989. This value functions are associated to Dubrovin valuation rings integral over its center. As a consequence of this last result, we obtain an existence theorem of gauges on finite dimensional semisimple algebras over a field with a rank one valuation (AU)

FAPESP's process: 06/00157-3 - Relating arithmetic-geometric nature properties of a body with characteristics of the body's total Galois group
Grantee:Maurício de Araujo Ferreira
Support Opportunities: Scholarships in Brazil - Doctorate