Advanced search
Start date
Betweenand


Presence of active Caspase-3 and DNA damage and repair proteins in parthenogenetically activated swines embryos of high and low developmental capacity

Full text
Author(s):
Ana Rita Sousa Coutinho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD)
Defense date:
Examining board members:
Mayra Elena Ortiz D\'Ávila Assumpção; Maria Lucia Zaidan Dagli; Fabíola Freitas de Paula Lopes; Flavio Vieira Meirelles; Marcelo Marcondes Seneda
Advisor: Mayra Elena Ortiz D\'Avila Assumpção
Abstract

Apoptosis is a highly conserved form of cell death that plays a major role in animal development and cellular homeostasis by acting as a quality control mechanism to remove cells that are damaged, nonfunctional, misplaced or supranumerary. This form of cell death plays a major role on preimplantation embryonic development since embryonic cells are often subject to DNA damage, triggering either DNA damage and repair mechanisms or apoptosis. Once initiated the apoptotic process leads to caspase activation and cleavage of cellular substrates. The aim of the present study was to quantify active Caspase-3 (+casp-3) and to determine the role of this pro-apoptotic enzyme on the development of preimplantation porcine embryos, as well as to investigate the presence and localization of DNA damage and repair proteins. Four experiments were conducted using slaughterhouse immature oocytes collected from pre-pubertal gilt ovaries and in vitro matured (IVM) for 44-46 h. Metaphase II (MII) oocytes were parthenogenetically activated (PA) using ionomycin and strontium chloride and cultured in PZM-3 at 38&ordm;C, 5% CO2 in air and high humidity. In the first study embryos were distributed into 4 groups according to cleavage time and cell number: R4 - cleaved at 24 h with &ge;4-cells at 48 h; R2 - cleaved at 24 h with 2-3 cells at 48 h; L4 - non-cleaved at 24 h with &ge;4-cells at 48 h; L2 - non-cleaved at 24 h with 2-3 cells at 48 h. Group R embryos showed higher blastocyst rates R4-66.1 (174/263) and R2-59.6 (62/104) and more nuclei per blastocyst, R4-40.1 and R2-38.9, when compared to group L L4-15.4 (6/39) and L2-16.8 (13/77); L4-18.5 and L2-18.3 (Chi-square and Tukey-Kramer, P<0.05); however, there were no differences between R4 and R2 or L4 and L2. The second experiment used only early-(R) and late-cleaved embryos (L), classified at 24 h of IVC, fixed at D-2, D-4 and D-6 and then stained for +casp-3 immunofluorescence. In this embryos fixed at D-2, D-4 and D-6 were considered as sub-experiments conducted in different replicates. Active Caspase-3 cytoplasmic signal was detected in cultured embryos from D2 to D6 and nuclear signal was detected from D5 to D6. The relative amount of immunofluorescence signal for +casp-3 for groups R and L at D2, D4 and D6 of culture was 2.4 vs. 1.4; 1.1 vs. 1.0 and 1.1 vs. 1.2, respectively. A third experiment was conducted to evaluate the role of +casp-3 on porcine preimplantation embryos. In this study the Caspase inhibitor Z-DEVD-fmk (100 uM) was supplemented during maturation of porcine oocytes or embryo culture (D0 to D2 or D4 to D6). Addition of the caspase inhibitor during IVM or D4 to D6 of culture did not affect blastocyst rate. However, caspase inhibition from D0 to D2 increased development of porcine embryos to the blastocyst stage [55.1 (59/107) and 37.5 (39/104) for control and Z-DEVD-fmk, respectively; Chi-square, P<0.05). The last experiment investigated the presence of DNA damage and repair proteins &gamma;H2AX, 52BP1, NSB1, and Rad52 in early- and late-cleaved embryos by immunofluorescence. There was no 53BP1 signal in PA porcine embryos at beginning of IVC. Late-cleaved embryos showed higher &gamma;H2AX signal than early-cleaved embryos; however, there was no difference between NSB1 and Rad52 staining between these embryos. In conclusion, apoptosis and DNA damage and repair mechanisms play a role on development of porcine embryos. Active caspase-3 is present in porcine embryos throughout the preimplantation period and inhibition of this enzyme at early stages of in vitro culture can increase blastocyst rate of PA embryos. Moreover, late-cleaved embryos carry higher DNA damage than early-cleaved embryos. Therefore, the relationship between DNA repair mechanism and developmental potential of porcine embryos need to be further investigated. (AU)