![]() | |
Author(s): |
Flávio Ribeiro Alves
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD) |
Defense date: | 2009-02-12 |
Examining board members: |
Maria Angélica Miglino;
Carlos Eduardo Ambrosio;
Ricardo Romão Guerra;
Irina Kerkis;
Moacir Franco de Oliveira
|
Advisor: | Maria Angélica Miglino |
Abstract | |
Olfactory cells demonstrate regenerative capacity along life, although, its mechanism is still obscure. We evaluated the differentiation capacity of olfactory stem cell of mongrel dogs (Canis familiaris Linnaeus, 1758) in 12 adult dogs and 12 fetuses at term (60 days of pregnancy) from the Veterinary Hospital of FMVZ-USP. Following the sampling, the epithelia were submitted to standard histological process and stained with HE, toluidine blue and PAS. Samples fixed with 2.5% glutaraldehyde solution were processed for transmission electron microscopy. Proliferative index were obtained with the detection of PCNA and Ki67. Cells were kept in culture in D-MEM/F-12 medium supplemented with hyclone bovine fetal serum (CO2-95% at 37ºC) for characterization and cell differentiation (osteogenesis, adipogenesis, and neurogenesis). Cell culture of fetuses at term demonstrated higher evolution in comparison to adult animals, being submitted to the protocols of characterization and differentiation. Cell culture demonstrated positive reaction for CD29, OCT-4, Ck18 (citokeratin) and vimentin. Osteogenic differentiation demonstrated, 21 days, typical morphological cells characterized by Alizarin Red and Von Kossa staining. Adipogenic differentiation demonstrated less number of cells containing granules, stained with Oil Red, although being not typical shape. Neurogenic differentiation demonstrated positive staining for GFAP, Neurofilament, Oligodendrocyte and III β-tubulin. Cells isolated from epithelia of fetuses at term demonstrated population of stem cells determined by the expression of specific-staining and differentiation into other type of cells, which lead us to consider the olfactory epithelia as a source of potential stem cells particularly for neurogenic differentiation to be applied for further studies in cell therapy. (AU) |