Advanced search
Start date
Betweenand


Inhibition of replication of rabies virus in vivo and in vitro using RNA interference

Full text
Author(s):
Ekaterina Alexandrovna Durymanova Ono
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD)
Defense date:
Examining board members:
Paulo Eduardo Brandão; Maria Luiza Carrieri; Leonardo José Richtzenhain
Advisor: Paulo Eduardo Brandão
Abstract

Rabies is a zoonotic disease that affects all mammals and causes more than 55.000 human deaths every year, caused by rabies virus (RABV) a virus of the Mononegavirales order, Family Rhabdoviridae and the Lissavirus genus. After the onset of the symptoms, the illness has a fast progression and the patients feel intense physical suffering. Currently, human rabies treatment has been based on the Milwaukee Protocol which consists on the induction of coma and massive antiviral therapy. Despite this protocol has been successful in two cases, including a Brazilian case (Recife State), more studies on antiviral for human rabies treatment are required. RNA interference is a new antiviral approach, which gives hope to the possibility of rabies antiviral treatment. The aim of this study was to assess the decrease in the titer of rabies virus in vitro and in vivo using short-interfering RNAs. For this purpose, three siRNAs (siRNA 124, siRNA B, siRNA 750) were used with antisense strands complementary to rabies virus nucleoprotein (N) mRNA. Pasteur virus strain (PV) of rabies virus and BHK-21 cells were used, and the monolayers were transfected with each of tree RNAs with Lipofectamine-2000. After 22 hours, the siRNA-treated and the control plates were tested by direct fluorescent antibody test (DFAT) with anti-rabies virus nucleocapsid antibody conjugate with fluorescein isothiocianate. Virus titers were calculated by the Spearman-Karber method. The results revealed that all three siRNAs reduced the titer of PV strain and a more intense effect was obtained with siRNA B. The titer of the PV strain in the control plate was 6.43lg TCID50%/ml and 5.56lg TCID50%/ml in the plate treated with siRNA B, respectively. The similar result was obtained in plates treated with siRNAs 124 and 750. The title of PV strain of these plates was 5.71lg TCID50%/ml of siRNA 124 and 5.65lg TCID50%/ml of siRNA750, respectively. No cytopathic or cytotoxic effect was observed in the monolayers treated with Lipofectamine-2000®. Swiss albino mice with 21 days weighing between 11 and 14g infected with strain PV by the intracerebral route used in this in vivo essay. After two hours of infection, a pool solution of 3 siRNAs with lipofectamine was also inoculated by the intracerebral route. The animals with paralysis were euthanized and those which survived were observed until the 30th day when they were also euthanized. The central nervous system of all animals were collected and induced to IFD. The title viral test group was 7.03logLD50%/ml and the control group was 7.13logLD50%/ml. The in vitro test results indicate that siRNAS are effective in inhibiting the replication of rabies virus with similar efficiencies. The use of the pool of three siRNA in mice resulted in 30% of survivors for 100 LD50% of PV virus, while the same dose led to 100% mortality in untreated animals. A lower efficiency in inhibiting the replication of rabies virus in vivo when compared with results in vitro could be possibly due to the high viral doses used. These results, although indicative of the need for further studies, show that RNAi is a promising technology as antiviral against rabies. (AU)