Advanced search
Start date
Betweenand


Partition of root water extraction between soil layers with distinct water contents

Full text
Author(s):
Leandro Neves Faria
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Quirijn de Jong van Lier; Derblai Casaroli; Luciana Gomes Castro
Advisor: Quirijn de Jong van Lier
Abstract

Water shortage is one of the most limiting factors for agricultural production. The understanding of factors that rule the extraction of soil water by plants and its distribution along the root system under contrasting hydraulic conditions is important for fine-tuning hydrological models which are a reference for crop growth models, meteorological models, among others. Aiming to contribute with the understanding of water dynamics in the rhizosphere, a model for the description of root water extraction partition was described and experimentally tested in this dissertation. To measure the root water extraction partition under contrasting hydraulic conditions an artificial environment was created: a split-pot lysimeter with two physically divided compartments A and B. Four of these lysimeters were constructed, filled with a medium textured soil and populated by two sorghum (Sorghum bicolor (L.) Moench) plants whose root systems were divided among the compartments. TDR and tensiometer equipment was installed in the lysimeters to measure soil water content and as a reference for irrigation, respectively. Irrigation management consisted of four phases: I - irrigation only in compartment B, drying out compartment A (07/May 25/May); II no irrigation, drying out of both compartments (26/May 05/June); III - irrigation only in compartment A, drying out compartment B (06/June 14/June); IV - no irrigation, drying out of both compartments (15/June 22/June). Soil hydraulic properties were determined in laboratory. At the end of the experimental period, lysimeters were disassembled and root system parameters were determined. To evaluate the performance of the root water extraction model, observed water contents were compared with model predictions, using the root means square error (RMSE) as quantitative index. A correction factor for root activity and distribution was included. Water contents were observed to vary in the four lysimeters due to irrigation and root water extraction. Model predictions showed much more positive values of than observed, suggesting that internal root resistance and mechanisms impeding reflux from root to soil, not considered by the model may play an important role in rhizosphere water relations. It is concluded that the experiment permitted to observe root water extraction under contrasting hydraulic conditions in the root system. Plants showed preference for water extraction from the wetter compartments, interrupting the exploitation of the dryer ones. On several occasions, a hydraulic lift (water transfer from roots to soil) was observed in the dry compartments. Using a root system efficiency factor of 0.015, the tested model described the observations reasonably well. (AU)

FAPESP's process: 07/02016-0 - Soil water extraction partition by roots from soil layers with contrasting water contents, evaluated in a split-pot lysimeter.
Grantee:Leandro Neves Faria
Support Opportunities: Scholarships in Brazil - Master