Effects of the neonicotinoid insecticide Imidacloprid and the fungicide Pyraclostr...
Effecto of ametryn and clomazone herbicides in bacterial antioxidant system
![]() | |
Author(s): |
Paula Fabiane Martins
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | Piracicaba. |
Institution: | Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC) |
Defense date: | 2008-01-21 |
Examining board members: |
Ricardo Antunes de Azevedo;
Silvia Maria Guerra Molina;
Marcos Pileggi
|
Advisor: | Ricardo Antunes de Azevedo |
Abstract | |
The increase of reactive oxygen species (ROS) production is observed in response to a variety of stressful agents, such as herbicides. Some studies can associate the antioxidant system with cell protection and resistance to agrochemicals. S-metolachlor is a chloroacetanilide herbicide of high toxicity and one of the most commonly detected agrochemicals in studies concerning environmental contamination. The objective of this work was to investigate the relation between the herbicide toxicity and the oxidative responses in three bacteria isolated from an agricultural soil. These microorganisms were cultivated in nutritive media in the presence of increasing herbicide concentrations (0 mM, 34 mM and 340 mM). At the high concentration of smetolachlor, 340mM, lipidic peroxidation was observed, reflecting the damage caused by the oxidative stress. The protein profile was different among bacterial species in SDS-PAGE analyze, but no significant difference occurred between the different s-metolachlor dosages. The superoxide dismutase and catalase enzymes showed activity induction in the presence of 34 mM of s-metolachlor, which can be related to the emergence of a new CAT isoform in native PAGE analyze. In the case of glutathione-reductase (GR) it was also observed the induction of new isoforms in the presence of the herbicide, mainly in the 340 mM PAGE concentration. The activity of glutathione S-transferase and GR in spectrophotometer reflected the herbicide toxicity, it decreased in the media with the 340 mM of s-metolachlor. The variety of responses showed among the bacterias was much higher than the factor that induced the response. This diversity can lead to found bacterial species with advantages in herbicide resistance. The results suggest that at low doses (34 mM), the herbicide may induce the activity of some antioxidant enzymes, but in larger doses (340 mM) it is toxic to the bacteria. (AU) |