Advanced search
Start date
Betweenand


Analysis of sugarcane-associated fungal community and study of the interaction Trichoderma virens host plant

Full text
Author(s):
Aline Silva Romão
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Welington Luiz de Araujo; João Lucio de Azevedo; Eduardo Bagagli; Carlos Alberto Labate; Itamar Soares de Melo
Advisor: Welington Luiz de Araujo
Abstract

Plant-associated fungi perform several important biological functions and are considered a vast source of novel chemical compounds, biological activities and biotechnological processes, whose potential is underexplored. The estimated diversity for these microorganisms is massive, but less than 7% of the species are already known. Sugarcane, one of the most important crops in Brazil, has only recently been studied regarding interactions and diversity, but these studies are still incipient, mainly concerning fungal community and its interaction with transgenic plants. One of the species found on sugarcane fungal community is the fungus Trichoderma virens, whose potential on biological control, growth promotion, and enzymes and secondary metabolites production is huge. Taking this into consideration, the current work aimed to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated to two varieties of sugarcane, the conventional (SP80-1842) and the transgenic counterpart (IMI-1, expressing imazapyr herbicide resistance), and assess possible effects from transgenese, growth stage and management. In addition, a strain of T. virens, isolated as a sugarcane endophyte, was selected to perform the fungal-plant interaction assays and to determine its biological control mechanisms. The results of the first part of this work, including the isolation, characterization and evaluation of fungal community changes, showed that the sugarcane fungal community is made up by at least 35 different genera, most of them belonging to Ascomycota phylum, and its structure included many genera observed in very low frequencies, and a few genera highly frequent (Penicillium, Fusarium, Aspergillus, Trichoderma and Epicoccum), from which some have specificity to the place of isolation (root or rhizosphere). Assessing possible effects upon the fungal community showed that the growth stage was the only factor significantly influencing the communitys features, besides, if transgenese effects are present, they may be minor compared to other natural sources of variation. The second part of this work included the Agrobacterium tumefaciens-mediated transformation of T. virens strain T.v.223 and utilization of the generated transformant (hygromycin B resistant and GFPexpressing) to perform interaction studies by re-isolation and microscopy. The results revealed that this fungus did not promote any phenotypic change in the host plant, it was found mostly in roots, formed a dense mycelia cover over the roots and was able to penetrate intercellular spaces of root epidermis first layers. Finally, T. virens chitinase-deficient mutants were generated by gene deletion and RNAi gene silencing, and tested for biological control activity against different phytopathogens in greenhouse assays. Curiously, the results showed that chitinolytic activity may be essential to the biocontrol activity of T. virens, but its significance and the input of each chitinase depends on the plant and pathogen playing the interaction, since more than one mechanism may account for T. virens biological control, for instance, the induction of plant resistance. (AU)

FAPESP's process: 05/52343-2 - Effect of the cultivation of genetically modified sugarcane on the fungal diversity and the expression of genes involved in the plant-endophyte interaction
Grantee:Aline Silva Romão
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)