Advanced search
Start date
Betweenand


Morphological and physiological responses of five Brachiaria spp. cultivars to seasonal variations to air temperature and daylength

Full text
Author(s):
Márcio André Stefanelli Lara
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Carlos Guilherme Silveira Pedreira; Gustavo José Braga; Patricia Menezes Santos
Advisor: Carlos Guilherme Silveira Pedreira
Abstract

The brazilian livestock industry is based on the use of pastures. However, the seasonal pattern of climatic variations, concentrates most of the annual forage accumulation during the spring and summer. Thus, information on the yield potential, as well as on morphological and physiological responses of forages to temperature and daylength, in the absence of moisture constraints, may allow for the development of prediction models, which can be useful in planning forage-livestock systems. This study was carried out at the Departamento de Zootecnia of ESALQ-USP in Piracicaba, SP, from October 2005 through October 2006, with the purpose of generating a comprehensive dataset on the productive, morphological and physiological characteristics of Brachiaria spp. grasses, as well as to develop and evaluate models that describe and predict forage accumulation and sward characteristics as related to photothermal units (a climatic variable which integrates the effects of temperature and daylength). Five cultivars of Brachiaria spp. were used in the study: (Basilisk, Marandu, Xaraés Arapoty and Capiporã), harvested either every 28 days during the ‘summer’ and every 42 days during the ‘winter’, leaving a stubble of 15 cm. Plots (9 x 4 m) were irrigated to avoid water deficit and fertilized with 120 kg N and K2O ha-1 year-1. The experimental design was a randomized complete block with four replications. On each harvest, forage accumulation was measured in every plot and, from these data, annual and seasonal production for ‘summer’ and ‘winter’ were calculated. Additionally, one ‘summer’ regrowth and one ‘winter’ regrowth, were characterized weekly and every 10 days, respectively, where measurements were taken on stubble mass, forage accumulation, sward height, leaf area index (LAI), mean foliage angle, light interception (LI) and leaf photosynthesis, from which canopy photosynthesis was calculated. Capiporã was the most productive grass, with 18 Mg DM ha-1, followed by Xaraés and Basilisk, which yielded 14,8 Mg DM ha-1 year-1 on average, and Arapoty and Marandu with annual yield of 13,1 Mg DM ha-1. During the ‘summer’ Capiporã yielded 15,4 Mg DM ha-1. During the ‘winter’ Arapoty was the highest yielding (3,5 Mg DM ha-1), resulting in a less pronounced seasonal growth pattern (74% of total annual yield) than the other genotypes. Despite the contrasting yield potential, canopy photosynthesis did not differ (34,4 µmol CO2 m-2 s-1) across genotypes. The mean LAI of all swards was 2,53. Mean stubble mass increased from 4,48 Mg MS ha-1 in the ‘summer’ to 5,71 Mg MS ha-1 in the ‘winter’. Models of the evolution of forage mass and leaf mass above the stubble, as well as LAI, LI and sward height differed among genotypes and between seasons. The forage accumulation models gave yield predictions that were consistent with observed values, although under- and overestimations occurred for the all grasses, especially during the ‘winter’ and early ‘summer’. The use of models based on the photothermal unit proved effective for the prediction of yield and yield-related responses of Brachiaria grasses. In order for these models to become useful tools for systems planning and management, further study is needed in addition to richer, more comprehensive data libraries and a wider range of environments and management practices. (AU)