Luminous relationships, architecture and assimilation of carbon by canopies of xar...
Modeling carbon assimilation and morphogenesis responses of Mulato II Brachiariagr...
![]() | |
Author(s): |
Bruno Carneiro e Pedreira
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Piracicaba. |
Institution: | Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC) |
Defense date: | 2009-09-02 |
Examining board members: |
Carlos Guilherme Silveira Pedreira;
Luis Gustavo Barioni;
Ana Cláudia Ruggieri;
Patricia Menezes Santos;
Sila Carneiro da Silva
|
Advisor: | Carlos Guilherme Silveira Pedreira |
Abstract | |
On optimization of the animal production systems using models, morphological and physiological aspects of forage plants is required. Moreover, is necessary to understand grazing effects on regrowth, and consequently, on forage mass accumulation. The objective of this research was to evaluate the morphological and physiological responses, and adapting the CROPGRO model for predicting forage growth, in pastures under intermittent grazing, where defoliation frequency was dictated either by levels of light interception or by chronological time, in order to try to rationalize management practices under a physiological standpoint. The study was conducted at Escola Superior de Agricultura \"Luiz de Queiroz\", USP campus in Piracicaba, SP, on a kandiudalfic euthrudox using a one-year-old pasture of Xaraés palisadegrass where agronomic, morphological and physiological traits, such as forage yield, leaf area index (LAI) and light interception (LI) were studied. The experimental design was completely randomized with three treatments and three replications, for a total of nine experimental units (paddocks) of 120 m² each, which were mob grazed whenever canopy light interception reached 95% or 100%, or every 28 days. Grazing strategies resulted in different seasonal forage yields. On the first year, total mass accumulation was similar among strategies, but 28-d and 100% LI strategies reduced this amount on the second year. The herbage accumulation during the regrowth presented different patterns on each morphological component: leaf, stem and dead material, as well as, different responses on structure and forage production. Lower nitrogen and total non-structural carbohydrates pools on roots suggest a negative effect caused by longer rest periods on 100% LI and 28-d strategies. The results suggesting that Xaraes palisadegrass under intermittent grazing stocking be management respecting 30 cm as pre-grazed and 15 cm as stubble height, avoiding stem accumulation. The adaptation result shows that CROPGRO is an efficient tool to integrate physiological aspects of B. brizantha and can be used to simulate with good accuracy. (AU) |