Advanced search
Start date
Betweenand


Effect of gypsum in the soil bioavailable phosphorus measured by three methods

Full text
Author(s):
Rodrigo Coqui da Silva
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Luis Ignacio Prochnow; Luis Reynaldo Ferracciú Alleoni; Dirceu Maximino Fernandes
Advisor: Luis Ignacio Prochnow
Abstract

The soil chemical analysis provides technical support for soil fertility management through methodologies aiming to evaluate the level of sufficiency or deficiency of nutrients. The methods used to evaluate the phosphorus (P) bioavailability are certainly the most controversial which is due, mainly, to the complex interactions of this nutrient in the soil. In Brazil, the most common methodologies to evaluate soil P bioavailability in agricultural soils are the Mehlich and the ion exchange resin. The method that uses filter paper strips impregnated with iron oxide (Pi paper) is very similar in principle to the ion exchange resin, but has not been adequately studied in Brazil. Due to general soil fertility problems, gypsum has been applied acting as a soil subsurface ameliorant and also to decrease high soil sodium contents. Although, problems have been detected when evaluating P bioavailability in soils with high contents of gypsum due to the reaction of bicarbonate (HCO3 -), contained in the Olsen solution or in the ion exchange resin, because of the precipitation of calcium carbonate. In these situations the levels of P tend to be underestimated. In acid soils, where gypsum is widely applied, there is no investigation and reports on this problem, which was the objective of this study. Four experiments were carried out. In three incubation experiments different combinations were tested of P rates varying from 0 to 75 g kg-1 of phosphogypsuym, gipsite or reagent grade gypsum and the P sources triple superphosphates and Arad phosphate rock (APR). Five soil samples with different chemical and physical properties were used. Also, a greenhouse experiment was carried out with two short corn crops submitted to rates of gypsum applied to the soil. The soil samples were analyzed by three different methodologies, i.e., the ion exchange resin with NaHCO3 -, Mehlich and Pi paper, and in the greenhouse experiment the soil contents by these different procedures were correlated with dry-matter yield and P uptake by the corn plants. In all situations the presence of gypsum did interfere in the P bioavailability by the resin method, with a clear trend to decrease the P contents. The hypothesis that methods that utilize the HCO3 - can underestimate the amounts of soil P due to the presence of gypsum, natural or added to soils, was once again confirmed. An adequate correlation was found between the amounts of P evaluated by the Pi Paper and the Mehlich procedure, except when the APR was used, once the Mehlich tended to overestimate the values due to its acidic condition. In general, there was no adequate relation between the soil P and corn dry-matter yield or P uptake, which was probably due to irregular development of plants in treatments where high rates of gypsum was applied. It was shown that the interaction of HCO3 - with gypsum, before only reported for soils high in gypsum, can also occur in acid soils but it was noticed that the amount of gypsum to cause the interference is generally higher than the rates normally used at field conditions. (AU)