Advanced search
Start date
Betweenand
Related content


Salinity tolerance of grafted cucumber in greenhouse and control of soil salinization.

Full text
Author(s):
Flávio Favaro Blanco
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Marcos Vinicius Folegatti; Sergio Nascimento Duarte; Joao Tessarioli Neto
Advisor: Marcos Vinicius Folegatti
Abstract

Fertilizers application through irrigation water is a very common practice for greenhouse cultivation conditions, which can result in the soil salinization if irrigation management is not appropriated. It is very important to establish the crop tolerance to salinity and the efficient irrigation control for each crop to promote leaching of excess salts from the root zone until a tolerated level by plants. The present work had the aim to establish an adapted management of fertilization and irrigation for grafted cucumber cultivated in greenhouse, in order to control the soil salinity, and to evaluate methods of salinized soil reclamation. An experiment has been carried out in a 110 m 2 greenhouse to study the effects of different irrigation water salinity (S1=1,58 dS.m -1 , S2=3,08 dS.m -1 and S3=5,13 dS.m -1 ), different irrigation water depth (L0=1,00.ETc and L1=1,25.ETc) and two applications frequencies of L1 (F1=at every irrigations and F2=when accumulated irrigation water depth in L0 reaches 100 mm) on vegetative development and yield of cucumber, cv. Hokushin, grafted onto Cucurbita spp., hybrid Excite-Ikki. Irrigation management was made by tensiometers installed at 15 and 30 cm deep and by a reduced pan evaporation, installed inside the greenhouse. The results showed that the increment of one unit of irrigation water salinity reduced the total and marketable yield at 2,83 and 2,99%, respectively, not showing significantly reduction. Marketable fruits number per plant was reduced at 3,32% for each increment of one unit of salinity. Salinity also affected significantly the unitary leaf area and the leaf area index, as the height and stem diameter of the plants. The different irrigation water depths and frequencies of L1 application did not result in differences for yield and yield components. Each increment of one unit of salinity reduced yield and fruit number per plant, marketable and total, of 7,24 and 6,71% and 8,04 and 7,58%, respectively, which were smaller than that found on literature. Little reduction in yield and the lack of significantly differences between the levels of salinity did not allow to define cucumber tolerance to salinity and the irrigation management for high salinity irrigation water. Soil salinity increased proportionally to irrigation water salinity increasing, but irrigation water depths and application frequencies of L1 were not sufficient to reduce soil salinity, though the frequency F2 resulted in a slower increasing of soil salinity. Leaching of excess salts after cultivation showed that the application of leaching water depth by drip irrigation was more effective than the application by flooding on soil salinity reduction. We concluded that the relative leaching depth and the k coefficient value to be adopted are, respectively, 0,9 and 0,1 for drip irrigation and 1,3 and 0,2 for flooding, based on water depth calculated by equation of Rhoades & Loveday (1990). (AU)