Advanced search
Start date
Betweenand


Evaluation of the use of sap flow and the variation of stem and branches diameter in the determination of citrus water status, as a base for irrigation.

Full text
Author(s):
Juan Sinforiano Delgado Rojas
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Luiz Roberto Angelocci; Rinaldo de Oliveira Calheiros; Rubens Duarte Coelho; Ricardo Ferraz de Oliveira; Regina Celia de Matos Pires
Advisor: Luiz Roberto Angelocci
Abstract

A difficulty for the appropriate handling of irrigation of perennial plants like orchards is to determine the moment when and the amount of water that should be applied. There are several traditional methods to determine water nsumption, as well as indicators of water stress.However, they all have difficulties when used in the field because their approaches are not very accurate. Taking into consideration these problems and the importance of citrus in the economy of the state of São Paulo, the present work had two main objectives: a) to evaluate two methods for the estimation of sap flow in the determination of the daily rate of transpiration of plants of 'Tahiti' lime and b) to evaluate the use of the variation of the stem/branches diameter (by using a precision dendrometer) and the relative transpiration (estimated starting from the sap flow) as direct plant indicators of water stress. To reach these objectives, experiments were set up in two orchards of 'Tahiti' lime, one of young plants and another of adult plants. The methods for the determination of the transpiration (sap flow) were: the heat balance method (HBM) and the heat dissipation probe method (HDPM). The comparison between the two methods in a branch of an adult plant and the comparison of HDPM with lisimeter measurements in young plants demonstrated the accuracy of both methods for the quantification of the transpiration in citrus, mainly as a tool for located irrigation. With HBM, precautions should be taken to minimize errors due to spurious variations of sap flow values along the morning or overestimation of the values during night. With HDPM, the occurrence of a natural thermal gradient in the branch or stem is an error source that causes underestimation and that should be taken into account for accurate estimations. HDPM has shown to be a reliable technique with advantages over HBM for its less complexes and lower cost. The use of dendrometric variables of the stem (the variation of the daily contraction, the maximum diameter and the minimum diameter), in the literature recommended as indicative of water stress, is problematic because of the complex relationship that they have with the soil water status, the atmospheric water demand and the size of the stem. The analysis of the evolution of the daily maximum diameter and also, of the mean diameter are potential indicative techniques of plant water stress. However, more profound studies under different soil moisture regimes, with imposition of severe drying of the soil, that also take into account specific response characteristics of citrus species to the soil water status and the atmospheric water demand are needed. The relative transpiration (RT), expressed by the relationship between the current transpiration and the maximum transpiration (calculated by unit of leaf area), was related to the soil water status variation. However, its relation with the analysis of the evolution of the maximum diameter of the stem was less stable. (AU)