Advanced search
Start date
Betweenand


Exploiting the host parasitoid interactions for the identification of molecules with biotechnological potential

Full text
Author(s):
Guilherme Duarte Rossi
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Fernando Luis Cônsoli; Odair Aparecido Fernandes; Celso Omoto; Custodio Donizete dos Santos; Anne nathalie Volkoff
Advisor: Fernando Luis Cônsoli
Abstract

Parasitoids regulate their hosts physiological processes in order to produce suitable conditions for their own development by employing molecules produced by maternal tissues, the immature parasitoid and derived tissues, and associated simbionts (polidnavirus PDV). These molecules represent, therefore, an untapped resource of new molecules for the development of alternative pest control methods. Our objective was to exploit the hostparasitoid interactions aiming at the identification of molecules involved in host regulation for their use in the development of alternative strategies for pest control. The search for new molecules was concentrated on the interaction Diatraea saccharalis (F.) (Lepidoptera: Crambidae) Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) by assessing i) the effects of parasitization on the host digestive physiology and ii) the contribution of the venom gland and ovary in producing regulatory molecules, and by iii) the characterization of cDNAs isolated from teratocytes of C. flavipes. The potential application of molecules from hostparasitoid associations was verified by characterizing the activity of a putative chitinase isolated from the interaction Heliothis virescens (F.) (Lepidoptera: Noctuidae) Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) using recombinant proteins and geneticallymodified tobacco plants. Data obtained demonstrated parasitized larvae had reduced relative growth (RGR), consumption (RCR) and metabolic (RMR) rates, while an increased efficiency in the conversion of the digested food (ECD) was obtained as compared to unparasitized larvae. Larvae parasitized by C. flavipes retained the food in the gut for a longer period and had higher activities for -amylase, sacarase and trehalase if compared to control larvae. Analysis of the transcriptome of the venom gland and ovary of C. flavipes predicted a large number of unknown proteins. Nevertheless, several proteases, a protease inhibitor and an antimicrobial protein from the venom gland, and an early-expressed protein (ep1), with a putative role in the process of host regulation from the ovaries, were identified. Two cDNAs isolated from teratocytes of C. flavipes were putatively identified as a serpin and an eukaryote translation inhibitory factor (CfHTIF). Both were detected in teratocytes from day 5 of parasitism and onwards, with the CfHTIF being also detected in hemocytes of parasitized hosts. Comparative analysis of the CfHTIF indicated it is highly homologous to host translation inhibitory factors produced by PDVs associated with other species of Cotesia, indicating its possible viral origin and suggesting this to be the first record of teratocytes as a source of PDV-derived proteins for host regulation. The characterization of the activity from the chitinase isolated from teratocytes of T. nigreceps (Tnchi) and the evaluation of its biotechnological potential via plant transgenesis to control larvae of H. virescens indicated this chitinase can bind to colloidal and crystalline chitins in in vitro assays, but it does not display chitinolytic activity. Assays with transformed tobacco plants expressing Tnchi did not result in any effect to H. virescens larval development and survival. Although Tnchi did not have any chitinolytic activity, it did show to have an antimicrobial effect. The possible exploitation of this protein for production of economically-important plants is dicussed. (AU)