Advanced search
Start date
Betweenand


Microbiological characterization of the removal and degradation of linear alkylbenzene (LAS) in anaerobic reactors with biofim and planctonics cells

Full text
Author(s):
Iolanda Cristina Silveira Duarte
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Maria Bernadete Amancio Varesche Silva; Pedro Alem Sobrinho; Carlos Augusto de Lemos Chernicharo; Lucia Regina Durrant; Marcelo Zaiat
Advisor: Maria Bernadete Amancio Varesche Silva
Abstract

The objective of this work was to evaluate the degradation of linear alkylbenzene sulfonate (LAS) in anaerobic conditions. The first experiments were accomplished in reactors in batch fed with different substrates and concentration of LAS. In spite of the surfactant to be adsorbed in the sludge interferences was not observed in the metabolism of anaerobic microorganisms, because in that way LAS became unavailable for the cellular degradation. Horizontal anaerobic immobilized biomass (HAIB) reactors were appraised as for the removal of LAS and inoculated with coming anaerobic slugde of reactors UASB used respectively in the treatment of sanitary sewage (R1) and treatment of wastewater swine (R2) immobilized polyurethane foam. The addition of LAS didn’t influence in the stability of the reactor. LAS began to be degraded after 108 days of its addition in the tributary of the reactors. Removal percentages, considering adsorption and degradation of LAS, with 313 days of operation was same to 50% and 91% for R1 and R2, respectively, when they were fed with synthetic sewage and 14 mg/L of LAS (reactor – R1) and only LAS to 14 mg/L (reactor – R2). In relation to the balance of mass of LAS, the reactors presented very similar degradations, being 35% for the reactor R1 and 34% for the reactor R2. The microbial diversity regarding the Bacteria and Archaea domain and to the group BRS was evaluated using the technique of PCR/DGGE. The alteration in the microbial diversity might have happened due to the selection of the microorganisms for the presence of the surfactant. The biomass present in the end of the operation was submitted the cloning technique and sequencing of the fragment of 16S rRNA for the bacteria domain. It was observed that the reactors presented larger number of clones related to the phylum Firmicutes, Clostridia, Clostridiales. Probably the microorganisms belonging to that group are involved with the degradation of LAS (AU)