Advanced search
Start date
Betweenand


Numerical modeling of settling processes in turbulent flows and channel re-suspension analysis

Full text
Author(s):
José Eduardo Alamy Filho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Harry Edmar Schulz; Nivaldo Aparecido Correa; Aristeu da Silveira Neto; Alexandre Silveira; Swami Marcondes Villela
Advisor: Harry Edmar Schulz
Abstract

The goal of this work is the research of sediment transport phenomena, deriving from outstanding turbulent eddies estimative. Thus, the mass transport equation (advection-diffusion) was connected with the filtered Navier-Stokes and continuity equations. In this context, the large-eddy simulation and sub-grid viscosity modeling established a convenient description of turbulence effects. The immersed boundary method was applied to model solid/fluid interface, represented here by the shapes of channel bottom. The filtered Navier-Stokes and continuity equations were solved by the fractional step method. The equations were discretized with the finite difference method, applied over staggered grids, whereas explicit Adams-Bashforth schemes (second and forth orders) were used in temporal advancement of velocities and sediment concentration fields. A new analytical formulation for settling velocity was obtained, while fortuitous re-suspension flux was applied like a boundary condition in the channel bottom. The computational code was totally developed in this work. The results of present simulations show that large-eddy simulation coupled to the immersed boundary method, considering, yet, the settling velocity of particles and the advection-diffusion equation for mass transport, constitute potential tools for sediment transport evaluation in water flows. (AU)