Advanced search
Start date
Betweenand


Anaerobic aerobic systems evaluation with immobilized biomass for organic material and nitrogen removal from municipal wastewater using biogas in the denitrification

Full text
Author(s):
Luis Hamilton Pospissil Garbossa
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Eugenio Foresti; Maria Cristina Borba Braga; Adalberto Noyola; Giovana Tommaso; Marcelo Zaiat
Advisor: Eugenio Foresti
Abstract

This work presents results of the evaluation of two different immobilized biomass reactor configurations, referred as radial flow anaerobic/aerobic immobilized biomass reactor (RAAIB) utilized for the treatment of the sanitary screened wastewater and horizontal aerobic/anaerobic immobilized biomass reactor (HAAIB) for the post-treatment of an upflow anaerobic sludge blanket reactor (UASB) treating sanitary wastewater. This study evaluates the two proposals for the biological organic matter and nitrogen removal by the evaluation of the reactors performance under several operational conditions, such as organic matter load variation, alkalinity solution feeding, variation on the compressed air supply for the nitrification step and biogas supply for the denitrification process. Assays were developed in order to obtain data on the hydrodynamic behavior in the RAAIB reactor, oxygen transfer and consumption and the viability of use biogas as electron donor for the autotrofic denitrification. The main performance parameters were measured thru physical-chemical analysis and microscopic observations. The RAAIB reactor was operated during all the experiment period with its liquid temperature varying from 14 'DEGREES' Celsius to 30 'DEGREES' Celsius. The chemical oxygen demand (COD) values in the effluent presented a mean value below 50 mg/L. The nitrogen as nitrate removal efficiency incresead up to 75% after supplying 'H IND.2'S' thru biogas injection. The HAAIB reactor operated with temperatures varying from 14 'DEGREES' Celsius to 26 'DEGREES' Celsius. The COD values in the effluent presented a concentration value lower than 66 mg/L and the nitrate removal increased 87% after supplying 'H IND.2'S' thru the biogas injection in the anoxic reactor. The collected data proved the viability of the use of these reactors as an alternative for the treatment and post-treatment of sanitary wastewater due to the promising results obtained in the assays performed in the reactors. (AU)