Advanced search
Start date
Betweenand


Dynamic response of a UASB reactor submitted to organic and hydraulic cyclical loads: mathematical models and experimental results

Full text
Author(s):
Karina Querne de Carvalho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Eduardo Cleto Pires; Erich Kellner; Wiclef Dymurgo Marra Junior; Reinaldo Pisani Junior; Silvia Claudia Semensato Povinelli
Advisor: Eduardo Cleto Pires
Abstract

There are no extensive reports on the dynamic behaviour of UASB reactor submitted to cyclical daily variations of organic and hydraulic loads of short periods of time - equal to or shorter than 24 hours - that can damage the reactor efficiency due to probable granule flotation, odor generation and high concentration of suspended solids in the effluent. Aiming to understand the dynamic response of these reactors when submitted to these variations, it was developed the MMS model based on the N-continuous flow stirred tank reactors (CSTR) in series model, first order kinetics model for substrate consumption and biomass growth and empirical equations reported in the literature. The model indicated the reactor capacity on dampening the imposed flow rate variations and the influence of the kinetics in the organic matter removal efficiency. It was evaluated the response of a UASB in bench scale (160 L) treating sanitary sewage of São Carlos city in order to calibrate and validate the MMS. During the operation, the reactor was submitted to cyclical sinusoidal variations of organic and hydraulic loads in lesser and higher values of 40% and 60% of the influent flow rate of 16 L/h. The reactor achieved mean methane production and mean COD removal efficiency of: 1,83 L/h and 61% to influent flow rate of 16 L/h, HRT of 10 h and upflow velocity of 0,23 m/h; 2,24 L/h and 48% to sinusoidal variation of 40%; 2,97 L/h and 40% to sinusoidal variation of 60%. The MMS model results indicated a range of effluent COD values with a difference of 37% to influent flow rate of 16 L/h, 59% and 56% to sinusoidal variations of 40% and 60%, respectively, in comparison with the experimental observed data. This probably occurred due to the model limitation in considering and predicting the solids washout in the effluent that was verified during all the operation, and also more significant when the sinusoidal variations were applied. The ADM1 reported by Batstone et al. (2002a,b) presented lesser similarity with the experimental observed results due to the fact that it does not consider hourly and daily variations of some input parameters, but only the arithmetical mean of the values. (AU)

FAPESP's process: 02/00683-6 - Dynamic response of a UASB reactor submitted to organic and hydraulic cyclical loads: mathematical models and experimental results
Grantee:Karina Querne de Carvalho
Support Opportunities: Scholarships in Brazil - Doctorate