Advanced search
Start date
Betweenand


Methodology for detection and treatment of failures in manufacturing systems applying Petri Nets.

Full text
Author(s):
Luis Alberto Martínez Riascos
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Paulo Eigi Miyagi; Fabio Gagliardi Cozman; Paulo Roberto Tavares Dalcol; Arthur Jose Vieira Porto; Gilberto Francisco Martha de Souza
Advisor: Paulo Eigi Miyagi
Abstract

In a real manufacturing system, failures are events that should be considered. However in this area, most researches consider only the description and optimization of normal processes. This research is a contribution to develop a methodology for modeling and analyzing manufacturing system including normal processes, failure detection, and failure treatment. An approach considering those processes is basic for improving flexibility and autonomy of the systems. These systems can be observed from a point of view of discrete event dynamics systems (DEDS). From this point of view, Petri nets are a powerful tool for modeling and analyzing different characteristics of a system using the same model. In this research a methodology based on Petri nets considering normal process, detection, and treatment of failures in manufacturing systems is introduced. This methodology considers a hierarchical and modular structure. The modular characteristic permits integration of three types of processes: normal, failure detection, and failure treatment processes. The hierarchical characteristic permits to model a system by hierarchical levels (such as factory, manufacturing cell, and equipment) based on top-down and bottom-up approaches, and using distributed supervisors inside of machines on the workshop level. Case studies with these characteristics are considered. On the developed models, analytical and simulation analyses are executed to validate the proposed methodology. (AU)