Advanced search
Start date

Study pf processing and microstructural guidance in nanocomposites in block copolymers.

Full text
Leice Gonçalves Amurin
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Nicole Raymonde Demarquette; Danilo Justino Carastan; Márcia Carvalho de Abreu Fantini
Advisor: Nicole Raymonde Demarquette

In this work nanocomposites block copolymer were studied. The block copolymers used were SEBS (polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene) and SEBS-MA (containing about 2% of maleic anhydride in the block EB), the nanocharges were organoclays namely: Cloisite 20A (modified with 95 meg/100g clay salt di (hydrogenated tallow alkyl) dimethyl ammonium) and Cloisite 30B (modified with 90 meq/100 g clay salt (tallow alkyl) methyl ammonium dihidroxietil). The nanocomposites were obtained by melt mixing using a twin-screw extruder. Two types of matrices, filament and ribbon were used. The microstructures and properties of the resulting materials were characterized by Small Angle X-Ray Scattering (SAXS), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small Amplitude Oscillatory Shear (SAOS) and Time Sweep were carried out. Sequences of rheological tests were conducted to study a possible alignment of the structures during flow. In particular, the samples were submitted to Large Amplitude Oscillatory Shear (LAOS) and recovery. The samples were also tested in extensional flows using an appropriate geometry. These latest tests were conducted using two types of samples: tape samples cut along the flow direction (longitudinal) or cut perpendicular to the flow direction (transverse). The analysis of structural characterization (XRD and TEM) indicated an intercaled structure of the nanocomposite SEBS/20A, exfoliated for SEBS-MA/20A and partially exfoliated nanocomposite for SEBS-MA/30B. The results showed that the structures are well ordered with hexagonal cylindrical packing for both copolymers and nanocomposites. The results of structural characterization showed that the extrusion process aligned cylinders (PS) in the flow direction of extrusion and the clay particles also suffered a preferred orientation on a smaller scale. The rheological characterization of the samples in shear showed that the morphologies of the nanocomposites are stable with time of shearing, and it confirmed the morphologies of the nanocomposites. The rheological tests showed that it is possible to guide the morphologies in shear and extension. (AU)

FAPESP's process: 08/01886-4 - Study of processing and microstructural guidance in nanocomposites in block copolymers
Grantee:Leice Gonçalves Amurin
Support type: Scholarships in Brazil - Master