Advanced search
Start date
Betweenand


Effects of weld strength mismatch on crack tip driving forces of welded joints: experimental evaluation of fracture toughness and extension of methodologies for integrity assessment.

Full text
Author(s):
Gustavo Henrique Bolognesi Donato
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Claudio Ruggieri; Waldek Wladimir Bose Filho; Leonardo Barbosa Godefroid; Rodrigo Magnabosco; Roberto Martins de Souza
Advisor: Claudio Ruggieri
Abstract

This work presents an evaluation of weld strength mismatch effects on crack driving forces and proposes an extension of defect assessment procedures for welded structures to include effects of weld strength mismatch. The main motivation is based on the strong expansion of Brazilian petroleum industry and the increasing demand for productivity, safety and reliability of pipelines and correlated structures. In this context, it is initially presented a detailed description of fracture mechanics parameters, welding metallurgy fundamentals and mechanic and microestructural effects due to mismatched welds. Next, the main procedures for experimental evaluation of fracture toughness are addressed followed by a discussion on current integrity assessment standards based on FAD and the Weibull stress methodology. These studies provide the necessary background to conduct a wide variety of experimental tests in welded joints and the proposal of corrections for experimental fracture toughness evaluation in welded joints, corrections for limit load estimation schemes in mismatched structures and a new toughness scaling model based on Weibull stress applicable to welded mismatched joints. Finally, the resulting framework is incorporated into a modified FAD-based procedure specifically designed for integrity assessment of welded mismatched structures. The experimental results reveal strong deleterious effects of mismatched welds on loading capacity and fracture toughness of the analyzed specimens. However, the extensive body of calibrated eta and plastic rotational rp factors allows accurate experimental determination of fracture toughness for homogeneous and bimaterial SE(B) specimens. Additionally, the limit load estimation scheme proposed incorporates the materials hardening capacity while the Weibull-based toughness scaling model incorporating mismatch effects allows accurate estimation of the weldment toughness from base metal data and a simple experimental calibration. Results from an exploratory application indicate a high degree of accuracy and confirm the validity of the proposed methodology as a potential tool for design and integrity assessments of cracked weldments. (AU)