Advanced search
Start date
Betweenand


Biocover for methane oxidation in solid waste landfills.

Full text
Author(s):
Lia de Sousa Maldaner
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Fernando Antônio Medeiros Marinho; Maria Cristina Moreira Alves; Miriam Gonçalves Miguel
Advisor: Fernando Antônio Medeiros Marinho
Abstract

The decomposition of solid waste in landfills is a major source of methane to the atmosphere. This gas contributes more than carbon dioxide to heat trapping in the atmosphere and to the consequent global warming (greenhouse effect). The biological oxidation of methane in landfill cover systems is an alternative to reduce fugitive gas emissions. This process occurs by microbial activity in environments where methane, oxygen and methanotrophic bacteria are available. The methane oxidation in urban landfill cover systems can be improved by the creation of favorable environment conditions. A methodology for monitoring and quantification of methane oxidation is proposed, to evaluate the performance of different materials for oxidative cover, taking into account the climatic aspects. We evaluated two biofilter cover systems installed at Delta A landfill located in the city of Campinas (SP). The gas collection system well was used as methane source. Two different materials were tested: (1) construction and demolition waste and (2) natural quartz sand, both mixed with organic mature compost. The methane, carbon dioxide and oxygen concentration profiles and meteorological factors (atmospheric pressure, temperature and precipitation) were monitored over 20 months. The two materials were capable of oxidizing methane. Methane oxidation was affected by flow rate through the cover system, and therefore by the material gas permeability. The maximum methane oxidation rate was approximately 10 kg CH4/m².day. A methodology is proposed for quantifying methane oxidation based on measurements of methane concentration and flow rate in the upper part of the biofilter. (AU)

FAPESP's process: 09/11188-5 - Landfill Cover System for Biological Oxidation of Methane
Grantee:Lia de Sousa Maldaner
Support Opportunities: Scholarships in Brazil - Master