Advanced search
Start date
Betweenand


Formulation method for rendering mortars based on particle size distribution and rheological behavior.

Full text
Author(s):
Fábio Alonso Cardoso
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica (EP/BC)
Defense date:
Examining board members:
Vanderley Moacyr John; Douglas Gouvêa; Paul Houang; Claudio de Souza Kazmierczak; Rafael Giuliano Pileggi
Advisor: Vanderley Moacyr John
Abstract

The in-use performance of rendering mortars depends on the raw materials features and their content in the formulation, since they have major influence on the material behavior during emplacement, as well as, on its final properties. Adherence failure is one of the most frequent problems of this class of building materials, caused by the incompatibility between rheological behavior and the application process, generating mortar/substrate interface flaws. A rheological behavior more suitable to the application demands, provides appropriate conditions to obtain maximum final rendering properties. Therefore, the main goal of this work is to develop mix-design parameters based on raw materials features, particle packing models and rheological behavior, in order to create a mix-design method for mortars. Squeeze-flow technique was successfully adapted for the rheological evaluation of rendering mortars, and the most important experimental parameters were studied. The method is sensitive enough to measure rheological changes as a function of the mixing process applied. Considering that phase segregation plays an important role on the rheological behavior of concentrated suspensions especially at low speeds, a method was developed to measure paste-aggregate segregation. It was also established that the squeeze-flow agrees well with the workers perception during manual emplacement. Several Brazilian and European products were evaluated, and significant differences were determined on the formulation features, rheological behavior and hardened properties. Using models of particle packing and particle distance, it was verified that optimized packing of aggregates enhances rheological behavior and can also allow the reduction of water and fine particles consumption. The experimental relationships established between fresh characteristics, rheological behavior and final properties can be used to predict hardened features and properties with fair confidence. Lastly, mix-design suggestions are made considering both fresh and hardened performance. (AU)