Advanced search
Start date
Betweenand


Functional study of mesenchymal cells with pathogenic mutations in TCOF1

Full text
Author(s):
Camila Camanzano Ornelas
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Maria Rita dos Santos e Passos Bueno; Gisele Monteiro de Souza; Chao Yun Irene Yan
Advisor: Maria Rita dos Santos e Passos Bueno
Abstract

In this work we tried to outline the effects of functional and gene expression of pathogenic mutations in the gene TCOF1 in non-embryonic cells. From the establishment of facial periosteum derived cell culture of four patients with Treacher Collins syndrome (TCS), we obtained cell populations that are more than 95% positive for mesenchymal origin characteristic antigens. We demonstrated that mesenchymal stem cells and fibroblasts from patients with TCS showed reduction of approximately 31% in the TCOF1 expression when compared to controls. This reduction was consistent with the decrease in the expression of transcripts carrying the pathogenic mutations observed when sequencing the cDNA of the patients. Therefore, these results suggest that degradation of the mutated transcript occurs and it may possibly be governed by the mechanism of non-sense mediated mRNA decay (NMD), thus corroborating the Treacle haploinsufficiency model. As the peak of TCOF1 gene expression is detected during the embryonic stage of the formation of neural crest cells and Tcof1+/- mice embryos had shown reduction of neuroepithelium cells proliferation rate, we tested if there is a change in proliferative capacity of adult mesenchymal cells with mutations in TCOF1. The analysis of the growth rate of TCS patients cells was similar to normal controls, indicating that lower levels of transcripts of the gene does not interfere with cellular proliferative capacity. Furthermore, we evaluated the bone differentiation potential of these cells in vitro, showing that lower levels of TCOF1 also seem does not influence cell differentiation ability. Although a cellular phenotype has not yet been identified, deficiency of TCOF1 in non-embryonic cells results in gene expression change, since genomic analysis of the expression of cell cultures identified a number of differentially expressed genes. Furthermore, arresting cell cycle and apoptosis related genes with increased expression in embryonic cells of Tcof1+/- mice showed no increased expression in human cells with pathogenic mutations in TCOF1 suggesting that the p53 pathway is not active in these non-embryonic cells. Among the differentially expressed genes found, the increase of DAXX transcripts in mesenchymal stem cells with pathogenic mutations in TCOF1 could modulate the function of p53 in these cells, providing a good target for future investigations to elucidate the function of TCOF1 in non-embryonic cells. The results suggest that deficiency of TCOF1 in mesenchymal cells leads to activation of other signaling pathways, whose functional effects are still unknown. The functions and cellular pathways in which the TCOF1 act, are issues yet to be elucidated concerning the role of the gene during adulthood. (AU)