Impacts of marine heatwaves on the red alga Gracilariopsis tenuifrons (Gracilarial...
![]() | |
Author(s): |
Mônica Miyuki Takahashi
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB) |
Defense date: | 2010-05-21 |
Examining board members: |
Mariana Cabral de Oliveira;
Maria Cristina Arias;
Helaine Carrer
|
Advisor: | Mariana Cabral de Oliveira |
Abstract | |
Mitochondria are semi-autonomous organelles responsible for cellular respiration. Many sources of evidence indicate the endosymbiotic origin of these organelles, in which an unicellular organism engulfed a prokaryotic organism, possibly an α-proteobacteria. During the endosymbiont and its host coevolution, the endosymbiont genome was reduced by gene loss and gene transfer to the nucleous. The mitochondrial genome size and organization varies within different phylogenetic lineages. The accumulation of molecular data helps to elucidate the origin and evolution of mitochondria. So far, only three species of Rhodophyta had their mitochondrial genome totally sequenced, Chondrus crispus, Cyanidioschyzon merolae and Porphyra purpurea. Red algae are economically important due to their use as food and for the extraction of polysacarids and accessory pigments. Gracilaria tenuistipitata var. liui Zhang et Xia is a red macroalgae very tolerant to environmental changes and shows high growth rates, being used as model organism in physiological, biochemical and molecular studies, including the sequencing of the whole chloroplast genome done by our research group. This study aimed the sequencing of the whole mitochondrial genome of G. tenuistipitata, the analysis of its gene content and the comparison within mitochondrial genomes of Rhodophyta and other photosynthetic organisms available at the GenBank. For that, total DNA was extracted for PCR amplifications, which were sequenced using primer walking and assembled to obtain the complete mitochondrial genome of G. tenuistipitata. The whole mitochondrial circular genome sequence of the red algae G. tenuistipitata was determined (25.565 nucleotides, C+G content 27%). Fifty genes were identified, including seven NAD H dehydrogenase complex subunits (nad 1-6, nad 4L), three succinate dehydrogenase complex subunits (sdh2-4), the apocytochrome b gene cob), three cytochrome c oxidase subunits (cox1-3), three ATP synthase complex subunits (atp6, atp8-9), five ribosomal proteins (rps3, rps11-12, rpl16, rpl20), three ribosomal RNA genes (rrn5, rnl, rns) and 22 tRNAs. One group II introns was found between the tRNA sup His /SUP. The mitochondrial genes of G. tenuistipitata are organized in two groups translated each one in each strand, in two opposite directions. The mitochondrial 13 genome of Gracilaria tenuistipitata is quite compact, with few intergenic regions and uses a modified genetic code. The gene content and its order in the mitochondrial genome of G. tenuistipitata are extremely similar to the C. crispus mitochondrial genome, and both genomes presented nucleotide identity above 70% in all the analyses. This similarity between the mtDNA of both species can be explained by the fact that both belong to the same class, Florideophyceae. The four Rhodophyta species compared in this study have the essencial components for the respiratory chain and ATP synthesis, besides some ribosomal proteins and almost all of the tRNAs and rRNAs. This work corroborate previous phylogenetic studies about red algae, showing that G. tenuistipitata and C. crispus are more closely related between each other than to P. purpurea, and that C. merolae is in a basal position. (AU) |