Advanced search
Start date
Betweenand


Evolution of floral morphology and community structure of a tropical Clade of Lianas (Bignonieae, Bignoniaceae)

Full text
Author(s):
Suzana de Fátima Alcantara
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Lucia Garcez Lohmann; Milton Groppo Junior; Louis Bernard Klaczko; Mariana Cabral de Oliveira; Luciano Paganucci de Queiroz
Advisor: Lucia Garcez Lohmann
Abstract

Flowering plants represent one of the most diverse groups of organisms in the Planet. A large portion of this diversity results from the multitude of floral forms encountered nowadays. To understand the patterns of floral variation and of the historical and ecological factors that led to the evolution of such diversity in floral forms are critical for a better understanding of the processes that led to the diversification of angiosperms. The tribe Bignonieae (Bignoniaceae) is the most diverse clade of Neotropical lianas and represents an excellent model for the study of floral evolution due to the high diversity of floral forms of this group. In this Ph.D. thesis, I aimed to characterize: (i) the pattern of evolution of discrete floral traits and floral morphologies in Bignonieae, as well the potential associations between floral morphologies and pollinators; (ii) the phylogenetic signal and the rates of evolution of continuous floral traits; (iii) the pattern and the magnitude of phenotypic integration among floral traits across the phylogenetic history of the group; and, (iv) the influence of phylogeny, floral morphology and abiotic factors for the patterns of species co-occurrence and the structure of communities of Bignonieae in the Neotropics. The results indicate high lability in the evolution of discrete floral traits and floral forms, contrasting the significant phylogenetic signal encountered in all 16 continuous floral traits examined. However, the phylogenetic signal differs between traits of different floral whorls. The rates of evolution also varied among different characters, suggesting the action of different selective pressures or differential responses to selection in different floral parts. Overall, the patterns of phenotypic integration were constant during the history of Bignonieae, despite the homoplastic evolution of the magnitude of correlation among characters. This apparent evolutionary complexity, leading to different patterns in different traits, is not reflected in the ecological structure of communities, given that nor floral morphology or phylogeny influence species co-occurrence. On the other hand, species specialization to abiotic factors was encountered, suggesting that environmental filtering played a key role in the structure of communities of Bignonieae. The results reject the hypothesis that saturation caused by competition for pollinators would be the main factor determining the intra-community structure of Bignonieae. (AU)