Advanced search
Start date
Betweenand


Study of genomic regions involved in the metabolism of amino acids and in determining cell wall structure in tomato

Full text
Author(s):
Fabiana de Godoy
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Maria Magdalena Rossi; Luciano Freschi; Carlos Alberto Labate; Adriano Nunes Nesi; Eduardo Purgatto
Advisor: Maria Magdalena Rossi; Fernando Oscar Carrari
Abstract

Although tomato is an old and widely distributed culture, it still faces challenges to improve production levels and quality for processing and consumption. The vast majority of agronomical important characteristics are determine by quantitative trait loci (QTL), further hindering the gene identification and transfer. Several features make tomato a good model for studying the genetic determinants underneath QTL. First, the availability of unexploited sources of wild germplasm that can increase genetic variability, coupled with the possibility of interbreeding between no sympatric species and autogamy. Second, the large amount of available genetic information as maps, EST collections, QTL, and an extensive collection of mapping populations. Third, the genome of S. lycopersicum is completely sequenced. Finally, due to their morphogenetic differences in relation to model species Arabidopsis thaliana, tomato becomes an alternative to eudicotyledons studies, especially in studies related to fleshy fruits metabolism. From the abundant data platform available and by means of genomic tools, and reverse genetics, this work addresses the study of two tomato genomic regions involved in amino acids and cell wall metabolisms. The comparative genomic study in a region of chromosome 7 has revealed the perfect synteny between S. lycopersicum and the wild species S. pennellii, and estimated the time of divergence between both species in 2.7 MYA. Additionally, it was possible to determine that the phenotypic differences between species are mostly due to changes in regulatory regions and the presence of SNPs. The functional study of LFP gene (Low Free Putrescine) allowed us to characterize a plastid protein, yet unknown in tomato, which participates in the metabolism of polyamines. The LFP silencing resulted in reduced availability of free putrescine and increased vegetative biomass. Furthermore, the functional characterization of the GAUT4 (galacturonosyltransferase 4) gene demonstrated that the encoded enzyme is located in the Golgi apparatus and participates in the pectin metabolism. In fruits, the reduced levels of GAUT4 resulted in decreased pectin and in the change of its composition. Additionally, GAUT4 gene silencing modified sugars partitioning leading to an increased vegetative biomass together with a drastic reduction of the harvest index. Thus, revealing a regulatory mechanism that communicates the cell wall metabolism to source-sink relationship control. Concluding, the results obtained contribute to a better understanding of agronomical important traits, as well as of complex physiological processes little explored in tomato so far (AU)