Advanced search
Start date
Related content

Genetic diversity of etx operon in enterotoxigenic Escherichia coli (ETEC) strains: determining the variability of gene sequences and the ability to synthesis of heat-labile toxin (LT).

Full text
Juliana Falcão Rodrigues
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Luis Carlos de Souza Ferreira; Waldir Pereira Elias Junior; Beatriz Ernestina Cabilio Guth; Roxane Maria Fontes Piazza; Isabel Cristina Affonso Scaletsky
Advisor: Luis Carlos de Souza Ferreira

Enterotoxigenic Escherichia coli (ETEC) strains represent an important etiological agent of diarrheal disease, particularly among children and travelers in developing countries. Among the virulence factors expressed by ETEC strains the heat-labile (LT) and heat-stable (ST) enterotoxins represent the most revelevant phenotypes. Indirect evidences suggest that the severity of diarrhea associated to ETEC strains might reflect the natural diversity of wild strains to produce enterotoxins and/or the occurrence of variants endowed with reduced toxic effects. In the present study, we investigated both the genetic diversity of the etx operon, encoding the heat-labile toxin, and the capability to produce/secrete LT by ETEC strains isolated from humans or porcine in different geoghrafic areas. The results showed a remarkable variability on the production of LT with values ranging from 2 to 2,525 ng of toxin per ml of culture. LT secretion was also variable with values ranging from less than 0.04% to 49.5% of total LT produced by the different ETEC strains. Additionally, rabbit ileal loop experiments showed a good correlation between the amounts of secreted LT under in vitro conditions and fluid accumulation in vivo. We determined also the diversity of the etxAB operon of 50 ETEC strains (LT+ or LT+/ST+) belonging to different serotypes with emphasis to LT+-only producing strains isolated from asymptomatic children. The complete nucleotide sequences of the etxAB genes revealed 23 amino acid changes at the A (18) or B (5) subunits, which generated 16 variant forms of LT. Among these LT variants, one of them showed reduced toxic effects in comparison to the reference toxin LT1. The attenuated LT form (LT4) had decreased enzymatic activity due to an amino acid replacement (K4R) at the A1 subunit. LT4 retains its immunogenic and adjuvant properties following nasal immunization. Additionaly, the LT4 variant showed altered immune modulatory features and promoted a more biased Th1 response, which favor activation of effector CD8+ T lymphocytes, to co-administred antigen with regard to LT1. Taken together, our results demonstrate that ETEC strains isolated from human subjects express natural genetic variability leading to a remarkable polymorphism of the etx operon as well as production and secretion of LT. Such natural genetic diversity observed in ETEC strains may affect the host-pathogen relationships and, consequently, contribute to the severity of the disease among infected subjects. (AU)