Advanced search
Start date
Betweenand


A new vaccine approach for the control of tooth decay based on recombinant Bacillus subtilis strains.

Full text
Author(s):
Milene Tavares Batista
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Rita de Cassia Cafe Ferreira; Mariana Minatel Braga Fraga; Frederico José Gueiros Filho; Eliane Namie Miyaji; Maria Leonor Sarno de Oliveira
Advisor: Rita de Cassia Cafe Ferreira
Abstract

S. mutans is the major etiologic agent of human dental caries, a disease with worldwide distribution. The adhesion to the tooth surface is dependent on the interaction of the P1 surface protein and salivary agglutinin (SAG) adsorbed to the tooth. The N-terminal region of P1 is an important vaccine target that is directly associated with adhesion and aggregation functions. This study aimed to evaluate vaccination strategies against S. mutans based on the P1 protein using recombinant B. subtilis strains. B. subtilis is a gram positive, spore-forming, non-pathogenic bacterium used as expression system for heterologous proteins and as a vaccine vehicle administered by mucosal routes. Inicially, we employed a recombinant B. subtilis strain to express and purify the P139-512 protein derived from the S. mutans UA159 P1 protein. The P139-512 antigen showed important conformational and linear epitopes similar to those present in the native P1 protein. The SAG-binding site is preserved in P139-512 as well as immunological properties. The parenteral co-administration of antigen with vaccine adjuvants stimulated systemic antibodies effective in blocking adhesion of S. mutans to SAG. Lastly, we used B. subtilis spores as a mucosal delivery vehicle for antigen targeting. B. subtilis endospores were modified to display bacterial adhesins (SlpA, InvA or Inv600), capable to bind to the intestinal epithelium, on the spore surface and to express intracellularly the P139-512 antigen during the vegetative cell stage. Oral immunization with adhesives spores induced high systemic and mucosal specific antibodies levels. The nasal or sublingual immunization with B. subtilis recombinant spores induced higher amounts of systemic antibodies than the oral immunization. Furthermore, the specific antibodies were highly effective in blocking the adherence of S. mutans to immobilized SAG, without interfering with aggregation. In conclusion, the results open interesting perspectives for the development of anti-caries vaccines based on B. subtilis strains. (AU)