Inhibitory effect of Tumor Necrosis Factor-± and Interleukin-1 in the eruptive pat...
Cellular and molecular mechanisms during the early development of rat alveolar bone
![]() | |
Author(s): |
Vivian Bradaschia Corrêa
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI) |
Defense date: | 2011-12-08 |
Examining board members: |
Victor Elias Arana Chavez;
Paulo Sérgio Cerri;
Flavio Fava de Moraes;
Anselmo Sigari Moriscot;
Suzana Cantanhede Orsini Machado de Sousa
|
Advisor: | Victor Elias Arana Chavez |
Abstract | |
Tooth eruption depends on coordinated interactions between the tooth germ and the surrounding bony crypt. The formation of the eruptive pathway requires the resorption of the occlusal portion of the bony crypt by osteoclasts. The bisphosphonates are drugs with known capability to inhibit clastic activity, and were employed in the present study with the aim of interfering in the alveolar bony crypt during the formation and eruption of rat molars. Daily alendronate or etidronate 2.5 and 8 mg/kg doses, respectively, were administered to newborn rats. The controls were injected with saline solution. At 4, 8, 14, 21 and 28 days, the maxillae were fixed in 2.5% formaldehyde + 2% glutaraldehyde, 4% formaldehyde + 0,1% glutaraldehyde or Zambonis fixative, decalcified in 4.13% EDTA and processed for light, confocal and transmission electron microscopy analyzes, TRAP histochemistry, and immunocytochemistry for OPN, BSP, RANK, RANKL and OPG. Some specimens were left undecalcified for scanning electron microscopy analyzes, or frozen in liquid nitrogen for protein extraction and Western Blotting protein expression analyzes. Etidronate occasioned alterations in the alveolar bony crypt metabolism that resulted in the delay of tooth eruption. Alendronate increased osteoclast number in the alveolar bone; however, most of them were latent, which decreased the resorption of the bony crypt surrounding the tooth germ and impeded the eruption and root formation of the molars. The expression of RANKL, an osteoclast-activating molecule, was decreased. The inhibition of the bone remodeling resulted in typical primary bone OPN and BSP labeling pattern. These results demonstrate that bone resorption at the entire surface of the crypt, and not only during the eruptive pathway formation, is crucial for adequate tooth eruption and formation. (AU) |