Investigation of optical, paramagnetic and luminescence properties on natural Braz...
![]() | |
Author(s): |
Eduardo Gardenali Yukihara
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Instituto de Física (IF/SBI) |
Defense date: | 2001-06-06 |
Examining board members: |
Emico Okuno;
Tomas Calderon Garcia;
Jose Fernandes de Lima;
Walter Maigon Pontuschka;
Chintamani Sunta
|
Advisor: | Emico Okuno |
Abstract | |
Topaz [Al2SiO4(F,OH)2] is most frequently found in nature in the colourless form, from which blue gems have been commercially produced applying colour enhancement treatments with ionising radiation followed by annealing. Topaz also exhibits relatively intense thermoluminescence (or thermally stimulated luminescence), which is the light emitted by previously irradiated materials during heating and represents the basis for application of many natural and artificial crystals in dosimetry and dating. In the last forty years, a period of intense study of plenty thermoluminescent materials, results on the thermoluminescence of topaz have seldom been reported and, in spite of some efforts to understand the colour of the crystal, the defects participating both in the mechanism of thermoluminescence emission and in the commercially successful colour enhancement treatments are not well identified. In this work the thermoluminescence properties of topaz and its relation to the process of colour production using ionising radiation were studied. Thermoluminescence was investigated with three main objectives: basic characterisation, determination of its suitability for dosimetric applications and as a tool for studying the relaxation processes in the solid. In order to understand the processes occurring in the crystal and to determine the possible defects involved, in addition to thermoluminescence, the material was also studied using the following techniques: optical absorption, photoluminescence, electron paramagnetic resonance, thermally stimulated conductivity, optically stimulated luminescence and conductivity, X-ray fluorescence, etc. Based on the experimental results and on the numerical solution of the rate equations for a multiple trap interactive system, we propose a model of thermoluminescence which is able to explain most of the properties observed in the crystal as, for example, the linear-supralinear-saturation dose response of thermoluminescence and the absence of sensitisation, the particular dose response of the thermally stimulated conductivity, the kinetic of colour formation, the thermal stability of colour, etc. Besides, the correlation between the electron paramagnetic resonance, optical absorption and thermoluminescence results suggest that the defects AlO44-, Ti3+ and PO44- are involved in the mechanism of colour production and in the thermoluminescence. (AU) |