Advanced search
Start date
Betweenand


Sysnthesis and characterization of fenites nanoparticles

Full text
Author(s):
Amanda Defendi Arelaro
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Hercilio Rodolfo Rechenberg; Jerome Depeyrot; Rosangela Itri
Advisor: Hercilio Rodolfo Rechenberg
Abstract

Magnetic nanoparticles have been extensively investigated, motivated by their potential technological and biomedical applications as well as in search of a better understanding of the physical properties modifications induced by nanoscale size. Synthesizing nanoparticles with a narrow size dispersion and good morphological, structural and stoichiometric homogeneity is an important requisite for such studies. In this work, nanocrystalline samples of different ferrites MFe2O4 (M = Fe, Co and Ni) have been prepared by a chemical synthesis method involving high-temperature decomposition of Fe acetylacetonate in the presence of a long-chain alcohol and of surfactant and stabilizing agents oleylamin and oleic acid. The main objective of this work being a comparative study of the effect of the M element on the magnetic properties, one sample was selected for each compound, with close mean diameters (5.7-8.1 nm). The structural characterization was carried out by low and high-resolution TEM and x-ray diffraction. Magnetic properties were characterized by frequency and temperature dependent ac susceptibility, magnetization vs. field measurements, and Mössbauer spectroscopy in applied magnetic fields ranging from 0 to 12 T. All samples exhibited narrow size distributions, no particle agglomeration, morphological homogeneity, and an excellent crystallinity. Magnetic anisotropy constants were obtained from magnetic data by two different methods, giving 2.5-6.1 for M = Ni, 23.0-19.3 for M = Fe, and 50.0-42.3 for M = Co (all data in 105 erg/cm3). These results are higher than those expected for the respective bulk materials, indicating an additional contribution to purely magnetocrystalline anisotropy. Saturation magnetization values at 4.2 K (17.1, 74.0 and 30 emu/g por M = Fe, Co and Ni) are generally below the corresponding bulk values. Magnetization curves above the blocking temperature exhibit superparamagnetic behavior. High-field Mössbauer spectra do not show a superficial shell of misaligned spins, thus confirming the high crystallinity of the nanoparticles. (AU)

FAPESP's process: 06/02749-5 - Synthesis and characterization of monodisperse magnetic nanoparticles
Grantee:Amanda Defendi Arelaro
Support Opportunities: Scholarships in Brazil - Master