Advanced search
Start date
Betweenand


Atomistic model for electronic transport in disordered organic systems

Full text
Author(s):
Járlesson Gama Amazonas
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Marilia Junqueira Caldas; Kaline Rabelo Coutinho; Marcia Carvalho de Abreu Fantini; José Arruda de Oliveira Freire; Osvaldo Novais de Oliveira Junior
Advisor: Marilia Junqueira Caldas
Abstract

Organic conjugated polymers present several interesting properties and can be used as active layers in e.g. light emitting diodes and field effect transistors. The electronic properties in the active layer are however difficult to model theoretically, which makes it also a hard task to engineer the device. The difficulties come from the structural characteristics of the material: amorphous, but composed of long and possibly folded molecular chains, so that a sound description of the structural characteristics is needed for the understanding of the electronic transport. The usual procedures for theoretical simulation bear no clear or direct link with the atomistic characteristics of the given used material. In this work we model the transport properties of polymer films through a non-linear Stochastic Master Equation, using the B¨assler-Miller-Abrahams formulation for the electronic transition rate. Our modeling however includes the simulation of realistic films, from atomistic models built through Classical Molecular Dynamics (CMD), and extracting all the relevant parameters for the SME from ab initio quantum calculations for model systems. For each film, \"images\" were selected along the CMD time evolution and for each of them a connectivity network (with the corresponding transition rates) was built, from explicit calculations of inter-ring bond distances and bond angles. To do that, it was needed a re-parametrization of the well-known Universal Force Field, concerning the non-bonded interactions. Furthermore, in parallel with the CMD work, also the values for the application of the SME were obtained from first-principles quantum calculations: conjugation length, site energies and transfer energies. We studied para-phenylene vinylene PPV oligomeric films, in different situations: crystalline, and amorphous. We calculated hole mobilities for different PV films (crystalline P5V4, amorphous P3V2 and P26V25) with several images for the same film, representing a given temperature, and also with different carrier concentrations. We clearly see the need of averaging obtained values for all relevant quantities. The proposed methodology was shown to incorporate the effects of morphology, and our results are in good accord, qualitaqualitatively and quantitavely, with experimental results for similar systems. (AU)

FAPESP's process: 07/05686-7 - Theoretical study for the optimization of organic photovoltaic devices
Grantee:Járlesson Gama Amazonas
Support Opportunities: Scholarships in Brazil - Doctorate