Advanced search
Start date
Betweenand


The Dirac equation with a superposition of the Aharonov-Bohm field and a uniform magnetic collinear field

Full text
Author(s):
Andrei Anatolyevich Smirnov
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Dmitri Maximovitch Guitman; Ivan Chestakov; Bruto Max Pimentel Escobar; Marcelo Otavio Caminha Gomes; Rogério Rosenfeld
Advisor: Dmitri Maximovitch Guitman
Abstract

ln the present work the Dirac equation with the supereposition of the Aharonov-Bohm (AB) field and a collinear uniform magnetic field, which we call a magnetic-solenoid (MS) field, is studied. Using von Neumann\'s theory of the self-adjoint extensions of symmetric operators, in 2 + 1 dimensions we construct a one-parameter family of self-adjoint Dirac Hamiltonians specified by boundary conditions at the AB solenoid and find the spectrurn and eigenfunctions for each value of the extension parameter. We reduce the (3 + 1)-dimensional. problem to the (2 + 1)-dimensional one by a proper choice of the spin operator, which allows realizing all the programme of constructing self-adjoint extensions and finding spectra and eigenfunctions in the previous tenns. We also present the reduced self-adjoint extension method for the radial Dirac Hamiltonian with the MS field. We then turn to the regularized case of finite-radius solenoid. We study the structure of the corresponding eigenfunctions and their dependence on the behavior of the magnetic field inside the solenoid. Considering the zero-radius limit with the fixed value of the magnetic flux, we obtain a concrete self-adjoint Hamiltonian corresponding to a specific boundary condition for the case of the magnetic-solenoid field \'W-ith the AB solenoid. These particular cases of self-adjoint extensions we call natural extensions. For completeness we also study the behavior of the spinless particle in the regularized magnetic-solenoid field. Successive step of our investigation is a construction of the Green functions of the Dirac equation with the MS field in 2 + 1 and 3 + 1 dimensions. The Green functions are constructed by means of summation over the complete set of solutions of the Dirac equation. Constructing the Green functions, we use the exact solutions of the Dirac equation that are related to the specific values of the extension parameter. These values correspond to the natural extension. Then we extend the results to the (3 + 1)-dimensional case. For the sake of completeness, we present nonrelativistic Green functions and Green functions of the relativistic scalar particle. (AU)

FAPESP's process: 00/05991-5 - Problemas of strong-field QFT in curved space and other backgrounds
Grantee:Andrei Anatolyevich Smirnov
Support Opportunities: Scholarships in Brazil - Doctorate