Advanced search
Start date
Betweenand


Point estimation and hypothesis test based on profile likelihoods

Full text
Author(s):
Michel Ferreira da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
Silvia Lopes de Paula Ferrari; Reiko Aoki; Enrico Antônio Colosimo; Francisco Cribari Neto; Filidor Edilfonso Vilca Labra
Advisor: Silvia Lopes de Paula Ferrari; Francisco Cribari Neto
Abstract

The profile likelihood function is not genuine likelihood function, and profile maximum likelihood estimators are typically inefficient and inconsistent. Additionally, the null distribution of the likelihood ratio test statistic can be poorly approximated by the asymptotic chi-squared distribution in finite samples when there are nuisance parameters. It is thus important to obtain adjustments to the likelihood function. Several authors, including Barndorff-Nielsen (1983,1994), Cox and Reid (1987,1992), McCullagh and Tibshirani (1990) and Stern (1997), have proposed modifications to the profile likelihood function. They are defined in a such a way to reduce the score and information biases. In this dissertation, we review several profile likelihood adjustments and also approximations to the adjustments proposed by Barndorff-Nielsen (1983,1994), also described in Severini (2000a). We present derivations and the main properties of the different adjustments. We also obtain adjustments for likelihood-based inference in the two-parameter exponential family. Numerical results on estimation and testing are provided. We also consider models that do not belong to the two-parameter exponential family: the GA0(alfa,gama,L) family, which is commonly used to model image radar data, and the Weibull model, which is useful for reliability studies, the latter under both noncensored and censored data. Again, extensive numerical results are provided. It is noteworthy that, in the context of the GA0(alfa,gama,L) model, we have evaluated the approximation of the null distribution of the signalized likelihood ratio statistic by the standard normal distribution. Additionally, we have obtained distributional results for the Weibull case concerning the maximum likelihood estimators and the likelihood ratio statistic both for noncensored and censored data. (AU)