Advanced search
Start date
Betweenand


Modeling techniques for business process performance analysis

Full text
Author(s):
Kelly Rosa Braghetto
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Matemática e Estatística (IME/SBI)
Defense date:
Examining board members:
João Eduardo Ferreira; Paulo Henrique Lemelle Fernandes; Alfredo Goldman Vel Lejbman; Ricardo Massa Ferreira Lima; Marta Lima de Queirós Mattoso
Advisor: João Eduardo Ferreira; Roberto Marcondes Cesar Junior
Abstract

Recent results in the research field of Business Process Management (BPM) are contributing to improve efficiency in organizations. BPM can be seen as a set of methods, techniques and tools developed to support business processes in their different requirements. Usually, the BPM techniques are based on a process model. In addition to enabling automated process configuration and execution, these models also increase the analizability of business processes. Despite being able to support business specialists in different phases of the life cycle of a business process (design, configuration, execution, and analysis), the models created in domain-specific languages, such as BPMN (Business Process Model and Notation), are not the most appropriated ones to support the analysis phase. Generally, these models have neither a formally defined operational semantics (which hinders their use for verification and validation), nor mechanisms to quantify the modeled behavior (which hinders their use for performance analysis). In this PhD research, we developed a framework to support and to automatize the main steps involved in the analytical modeling of business processes aiming performance evaluation. We studied the viability of applying three Markovian formalisms in business process modeling: Stochastic Petri Nets, Stochastic Process Algebras and Stochastic Automata Networks (SAN). We have chosen SAN to support the method proposed in this work. Our framework is composed of: (i) a notation to enrich BPMN business process models with information concerning the associated resource management and (ii) an algorithm that automatically converts these non-formal business process models in SAN stochastic models. With this, we are able to capture the impact caused by resource contention in the performance of a business process. From a model generated through our framework, we are able to extract varied performance indices that are good approximations for the expected process performance in the real world. (AU)