Advanced search
Start date
Betweenand


The microstructural changes in the neural tissue and the degree of cortical atrophy in the initial stages of relapsing remitting multiple sclerosis

Full text
Author(s):
Carolina de Medeiros Rimkus
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Claudia da Costa Leite; Henrique Carrete Junior; Fernando Cendes; Leandro Tavares Lucato; Antonio José da Rocha
Advisor: Claudia da Costa Leite; Maria Concepcion Garcia Otaduy
Abstract

Introduction: The degenerative processes are gaining attention as predictors of the neurological deficit in multiple sclerosis (MS), being reflected by the degree of axon loss and central nervous system atrophy. The white matter pathology (WM) is characterized by cellular membranes disruption and loss of the microstructural complexity, which can be accessed by the diffusion tensor imaging (DTI) indices of fractional anisotropy (FA) and mean diffusivity (MD). This imaging technique also offers two more specific indices: the axial diffusivity () and radial diffusivity (), which are useful to differentiate between axon loss and demyelination, respectively. The gray matter (GM) neuronal loss can be accessed by the degree of cortical atrophy. The aim of this study is to measure the DTI indices in the greatest WM commisure, the corpus callosum (CC), and the degree and distribution of cortical atrophy in patients with relapsing remitting MS (RRMS) and low disability scores, correlating them to the macroscopic lesion load and the main clinical scores. Method: 31 RRMS patients (22 women, mean age 30.5 years ± 8.7) and 34 healthy control (HC) subjects (27 women, mean age 32.3 years ± 7.8) were submitted to brain examinations in a 3T magnetic resonance image scanner. From DTI with 32 gradient encoding directions were extracted the indices of FA, MD, and , which were measured in 5 segments of the mid-sagital section of the corpus callosum (CC). The cortical thickness was obtained from the segmentation of volumetric T1 images. These results were correlated with the macroscopic lesion loads in the T1 and T2/FLAIR images and the scores in the Expanded Disability Status Scale EDSS, considering significant the results with p< 0.05. Results: The FA, MD and were diffusively abnormal in all 5 segments of the CC in the RRMS group and the was abnormal only in the splenium, anterior midbody and posterior mid-body. The anterior area of the both temporal lobes and right inferior parietal, some orbital-frontal and insular regions showed significant atrophy, with a tendency of atrophy in the superior frontal gyrus. The FA, MD and correlated with the T1 lesion load and, more significantly, with the T2/FLAIR lesion load. The cortical thickness correlated with T1 and T2/FLAIR lesion loads, more significantly with the T1 lesion load. The mean EDSS in the RRMS group was 1.1 ± 0.9 (range 0-3), correlating with the MD and of the splenium, anterior and posterior mid-body of the CC. The EDSS correlated to cortical thickness in the topography of the superior frontal gyrus. Discussion and conclusion: The FA, MD and are diffusively abnormal in the CC, with abnormalities in the , restricted to the medial and posterior segments. These results can be interpreted as signs of diffuse demyelination in the CC and a predominance of axonopathy or more advanced degeneration in some segments. The cortical atrophy also followed a characteristic regional distribution, affecting predominantly the bilateral temporal lobes, and inferior parietal, orbital-frontal and insular regions, in the right hemisphere. The correlations found between the DTI indices and the cortical thickness and the macroscopic lesion loads show that, at least partially, the WM and GM degeneration can be related to Wallerian degeneration secondary to macroscopic lesion accumulation. The correlations between the DM, , in some of the CC segments, and cortical thickness, in the superior frontal gyrus, and the EDSS scores reinforces the hypothesis that the degenerative processes in MS can play a role in the disability status of the patients (AU)