Advanced search
Start date
Betweenand


Mechanisms associated to the loss of galectin-3 gene expression in a model of murine melanoma progression

Full text
Author(s):
Veronica Rodrigues Teixeira
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Roger Chammas; Maria Cristina Roque Antunes Barreira; Maria Mitzi Brentani; Suely Kazue Nagahashi Marie; Lucile Maria Floeter Winter
Advisor: Roger Chammas
Abstract

Galectin-3 is a b-galactoside-binding animal lectin, shown to be involved in tumor progression and metastasis. Galectin-3 expression has been found altered along tumor progression of different tumors. In some types of cancers such as thyroid carcinoma and bladder carcinoma, galectin-3 expression has been found increased, whereas in tumors such as breast carcinoma and ovary carcinoma the expression of this lectin has been found decreased along tumor progression. In this study, we have used a murine melanoma model to investigate the mechanisms responsible for the loss of galectin-3 gene expression. This model consists of a cell line of immortalized melanocytes (melan-a) and two cell lines of vertical growth phase melanoma (Tm1 and Tm5) established after submitting melan-a cells to several deadhesion cycles. While melan-a expressed high amounts of galectin-3, both Tm1 and Tm5 cells lost galectin-3 gene expression. Analysis of the 5\' upstream region of the galectin-3 gene demonstrated the presence of a high CpG content and several SP1 binding sites. Bisulfite sequencing of this region showed that it was fully methylated in Tm1 and Tm5 cells and unmethylated in melan-a cells. Treatment of Tm1 cells with 5-aza-2\'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, led to a marked decrease in the methylation levels of the 5\' upstream region of the galectin-3 gene, which led to transcription of the galectin-3 gene. Treatment of Tm1 cells with the histone-deacetylase inhibitors trichostatin A and 4- acid-phenilbutyrate in combination with 5-Aza-CdR did not increase the levels of galectin-3 gene expression and intriguingly, reverted the effect of 5-Aza-CdR alone. In addition, the expression of DNMT1 showed a modest, but significant increase in Tm1 and Tm5 cells as compared with melan-a cells. Altogether these results indicate that epigenetic mechanisms such as methylation play a role in the regulation of the galectin-3 gene expression along murine melanoma progression. (AU)