Development of a new three-dimensional system for ... - BV FAPESP
Advanced search
Start date
Betweenand


Development of a new three-dimensional system for evaluating spine deformities - Spine3D

Full text
Author(s):
Thomaz Nogueira Burke
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Amelia Pasqual Marques; Paulo de Tarso Camillo de Carvalho; Silvia Maria Amado João; Edison Puig Maldonado
Advisor: Amelia Pasqual Marques
Abstract

Introduction: Scoliosis is a complex three-dimensional malalignment of the vertebral column in which there is lateral curvature of the spine in the coronal plane, usually associated with flattening of the contour in the sagittal plane and rotation of the vertebrae around their longitudinal axes. Routine clinical analysis of the scoliotic spine is currently based on the radiographic measurement of Cobb angle. Although considered as the golden standard, it has the disadvantage of look over only the two-dimensional aspects of the curve and, over a period of years, the patient will be exposed to a large dose of radiation, especially in early onset curves. There is evidence that this may increase the risk of developing several types of cancer. Objective: This paper describes a new low-cost and radiation-free system to evaluate the three-dimensional aspects of scoliosis, and its concurrent validation in terms of accuracy and precision. Its applicability was tested in a case study. Methods: The system, named Spine3D, has the ability to track an infrared beacon equipped with LEDs (IRLED) to reconstruct the pose of each lumbar and thoracic vertebra in 3D space. The system also calculates the spine alignment to the coronal, sagittal and transverse planes. For accuracy and precision evaluation of the system, the beacon was positioned 50 cm away from the IR camera (Wiimote), aligned with in the same plane. The beacon was increasingly translated at 10 mm intervals and rotated at 5°, 10°, 20° and 30° on all three axes. The capture achieved rate was of 100 Hz roughly and accuracy was calculated comparing the results of Spine3D, digital paquimeter and digital inclinometer. Precision was considered as the standard deviation of the collected data. Results: The average accuracy obtained for the system is 0.90° and 0.78 mm, with precision of 0.62° and 0.42 mm. For Cobb angle calculations in coronal plane, accuracy and precision were of 1.46° and 1.72°, and for thoracic kyphosis and lumbar lordosis, the values were 2.82° and 1.60°. During the case study, the difference between the Cobb angle measured by Spine3D and radiography was 1.3° for thoracic scoliosis curve and 2.24° for lumbar scoliosis curve. Conclusion: The Spine3D system offers a non-invasive and radiation-free alternative for three-dimensional spine assessment and representation. Future studies should indicate if the measures taken by the Spine3D system have correlation with the Cobb angle measured by other methods. (AU)

FAPESP's process: 10/09581-8 - Development of a new three dimensional spine evaluation system - Spine3D
Grantee:Thomaz Nogueira Burke
Support Opportunities: Scholarships in Brazil - Doctorate