Advanced search
Start date
Betweenand


Machine learning feature subset selection using Rough Sets approach.

Full text
Author(s):
Adriano Donizete Pila
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Maria Carolina Monard; Ricardo Luis de Freitas; Solange Oliveira Rezende
Advisor: Maria Carolina Monard
Abstract

In Supervised Machine Learning---ML---an induction algorithm is typically presented with a set of training examples, where each example is described by a vector of feature values and a class label. The task of the induction algorithm is to induce a classifier that will be useful in classifying new cases. In general, the inductive-learning algorithms rely on existing provided data to build their classifiers. Inadequate representation of the examples through the description language as well as inconsistencies in the training examples can make the learning task hard. One of the main problems in ML is the Feature Subset Selection---FSS---problem, i.e. the learning algorithm is faced with the problem of selecting some subset of feature upon which to focus its attention, while ignoring the rest. There are three main reasons that justify doing FSS. The first reason is that most ML algorithms, that are computationally feasible, do not work well in the presence of many features. The second reason is that FSS may improve comprehensibility, when using less features to induce symbolic concepts. And, the third reason for doing FSS is the high cost in some domains for collecting data. Basically, there are three approaches in ML for FSS: embedded, filter and wrapper. The Rough Sets Theory---RS---is a mathematical approach developed in the early 1980\'s whose main functionality are the reducts, and will be treated in this work. According to this approach, the reducts are minimal subsets of features capable to preserve the same concept description related to the entire set of features. In this work we focus on the filter approach for FSS using as filter the reducts obtained through the RS approach. We describe a series of FSS experiments on nine natural datasets using RS reducts as well as other filters. Afterwards we submit the selected features to two symbolic ML algorithms. For each dataset, various measures are taken to compare inducers performance, such as number of selected features, accuracy and number of induced rules. We also present a case study on a real world dataset from the medical area. The aim of this case study is twofold: comparing the induction algorithms performance as well as evaluating the extracted knowledge with the aid of the specialist. Although the induced knowledge lacks surprising, it allows us to confirm some hypothesis already made by the specialist using other methods. This shows that Machine Learning can also be viewed as a contribution to other scientific fields. (AU)