Advanced search
Start date
Betweenand


Combination of artificial intelligence methods for sensor fusion

Full text
Author(s):
Katti Faceli
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
André Carlos Ponce de Leon Ferreira de Carvalho; Aluizio Fausto Ribeiro Araujo; Carlos Henrique Costa Ribeiro
Advisor: André Carlos Ponce de Leon Ferreira de Carvalho
Abstract

Mobile robots rely on sensor data to have a representation of their environment. However, the sensors usually provide incomplete, inconsistent or inaccurate information. Sensor fusion has been successfully employed to enhance the accuracy of sensor measures. This work proposes and investigates the use of artificial intelligence techniques for sensor fusion. Its main goal is to improve the accuracy and reliability of a distance between a robot and an object in its work environment using measures obtained from different sensors. Several machine learning algorithms are investigated to fuse the sensors data. The best model generated with each algorithm are called estimator. It is shown that the employment of the estimators based on artificial intelligence can improve significantly the performance achieved by each sensor alone. The machine learning algorithms employed have different characteristics, causing the estimators to have different behaviour in different situations. Aiming to achieve more accurate and reliable behavior, the estimators are combined in committees. The results obtained suggest that this combination can improve the reliability and accuracy of the distance measures by the individual sensors and estimators used for sensor fusion. (AU)