Advanced search
Start date
Betweenand


Mining and visualization of time series collections

Full text
Author(s):
Aretha Barbosa Alencar
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Maria Cristina Ferreira de Oliveira; Marinho Gomes de Andrade Filho; Wu Shin Ting
Advisor: Maria Cristina Ferreira de Oliveira
Abstract

Time series analysis poses many challenges to professionals in a wide range of domains. Several visualization solutions integrated with mining algorithms have been proposed for exploratory tasks on time series collections. As the data sets grow large, though, the visual alternatives do not allow for a good association between similar time series. In this work, we introduce a tool for exploratory visualization and mining of large time series data sets that adopts a visual representation based on distance measures between series. This representation is created employing fast projection techniques, so the time series can be viewed in two-dimensional spaces. Various types of visual attributes and connection on the resulting graph can be applied to support exploration. It also supports data mining tasks, such as classification, to search for patterns. The resulting visualizations have proved very useful for identifying groups of series with similar behavior, which are mapped to the close neighborhoods in twodimensional spaces. Visual clusters of elements, as well as outliers, are easily identifiable. Case studies on several domains are presented to validate the tool. One of them is on a data set of stream ows in hydroelectric power plants in Brazil, a strategic application for energy planning. (AU)