Advanced search
Start date
Betweenand


Multidimensional data mapping - integrating mining and visualization

Full text
Author(s):
Fernando Vieira Paulovich
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Rosane Minghim; Luciano da Fontoura Costa; Carla Maria Dal Sasso Freitas; Maria Cristina Ferreira de Oliveira; Geovan Tavares dos Santos
Advisor: Rosane Minghim
Abstract

Projection or point placement techniques, useful for mapping multidimensional data into visual spaces, have always risen interest in the visualization and data analysis communities because they can support data exploration based on similarity or correlation relations. Regardless of that interest, various problems arise when dealing with such techniques, impairing their widespread application. In particularly the projections that yield highest quality layouts have prohibitive computational cost for large data sets. Additionally, there are issues regarding visual scalability, i.e., the capability of visually fit the individual points in the exploration space as the data set grows large. This thesis treats the problems of projections from various perspectives, presenting novel techniques that solve, to certain extent, several of the verified problems. It is also a fact that size and complexity of data sets suggest the integration of data mining capabilities into the visualization pipeline, both during the mapping process and as a tools to extract additional information after the data have been layed out. This thesis also add some aspects of mining to the multidimensional visualization process, mainly for the particular application of analysis of document collections, proposing and implementing an approach for topic extraction. As supporting tools for testing these techniques and comparing them to existing ones different software systems were written. The main one includes the techniques developed here as well as several of the classical projection and dimensional reduction techniques, and can be used for exploring various kinds of data sets, with addition functionality to support the mapping of document collections. This thesis contributes to the understanding of the projection or mapping problem and develops new techniques that are fast, treat adequately the visual formation of groups of highly related data items, separate those groups properly and allow exploration of data in various levels of detail (AU)