Advanced search
Start date
Betweenand


Optimization of coupled process: planning production and cutting stock

Full text
Author(s):
Carla Taviane Lucke da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Marcos Nereu Arenales; Reinaldo Morabito Neto; Aurelio Ribeiro Leite de Oliveira; Edson Luiz França Senne; Franklina Maria Bragion de Toledo
Advisor: Marcos Nereu Arenales
Abstract

In the many manufacturing industries (e.g., paper industry, furniture, steel, textile), lot-sizing decisions generally arise together with other decisions of planning production, such as distribution, cutting, scheduling and others. However, usually, these decisions are dealt with separately, which reduce the solution space and break dependence on decisions, increasing the total costs. In this thesis, we study the production process that arises in small scale furniture industries, which consists basically of cutting large plates available in stock into several thicknesses to obtain different types of pieces required to manufacture lots of ordered products. The cutting and drilling machines are possibly bottlenecks and their capacities have to be taken into account. The lot-sizing and cutting stock problems are coupled with each other in a large scale linear integer optimization model, whose objective function consists in minimizing different costs simultaneously, production, inventory, raw material waste and setup costs. The proposed model captures the tradeoff between making inventory and reducing losses. The impact of the uncertainty of the demand, which is composed with ordered and forecasting products) was smoothed down by a rolling horizon strategy and by new decision variables that represent extra production to meet forecasting demands at the best moment, aiming at total cost minimization. Two heuristic methods are proposed to solve relaxation of the mathematical model. Randomly generated instances based on real world life data were used for the computational experiments for empirical analyses of the model and the proposed solution methods (AU)